We construct automorphisms of positive entropy of K3 surfaces of Picard number with certain Salem numbers. We also prove that there is a fixed point free automorphism of positive entropy on a K3 surface of Picard number with Salem degree .
Révisé le :
Accepté le :
Publié le :
Keywords: K3 surface, Automorphism, Salem number
Lee, Kwangwoo 1
CC-BY 4.0
@article{CRMATH_2023__361_G11_1805_0,
author = {Lee, Kwangwoo},
title = {Salem numbers of automorphisms of {K3} surfaces with {Picard} number $4$},
journal = {Comptes Rendus. Math\'ematique},
pages = {1805--1812},
year = {2023},
publisher = {Acad\'emie des sciences, Paris},
volume = {361},
number = {G11},
doi = {10.5802/crmath.533},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.533/}
}
TY - JOUR AU - Lee, Kwangwoo TI - Salem numbers of automorphisms of K3 surfaces with Picard number $4$ JO - Comptes Rendus. Mathématique PY - 2023 SP - 1805 EP - 1812 VL - 361 IS - G11 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.533/ DO - 10.5802/crmath.533 LA - en ID - CRMATH_2023__361_G11_1805_0 ER -
%0 Journal Article %A Lee, Kwangwoo %T Salem numbers of automorphisms of K3 surfaces with Picard number $4$ %J Comptes Rendus. Mathématique %D 2023 %P 1805-1812 %V 361 %N G11 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.533/ %R 10.5802/crmath.533 %G en %F CRMATH_2023__361_G11_1805_0
Lee, Kwangwoo. Salem numbers of automorphisms of K3 surfaces with Picard number $4$. Comptes Rendus. Mathématique, Tome 361 (2023) no. G11, pp. 1805-1812. doi: 10.5802/crmath.533
[1] Isometries of lattices and automorphisms of K3 surfaces (2021) | arXiv
[2] On the stable dynamical spectrum of complex surfaces, Math. Ann., Volume 377 (2020) no. 1-2, pp. 421-434 | Zbl | DOI | MR
[3] Dynamics of automorphisms of compact complex surfaces, Frontiers in complex dynamics (Princeton Mathematical Series), Volume 51, Princeton University Press, 2014, pp. 463-514 | DOI | MR | Zbl
[4] On the entropy of holomorphic maps, Enseign. Math., Volume 49 (2003) no. 3-4, pp. 217-235 | MR | Zbl
[5] surfaces with Picard number , Salem polynomials and Pell equation, J. Pure Appl. Algebra, Volume 224 (2020) no. 1, pp. 432-443 | DOI | MR | Zbl
[6] Dynamics on surfaces: Salem numbers and Siegel disks, J. Reine Angew. Math., Volume 545 (2002), pp. 201-233 | MR | Zbl
[7] surfaces, entropy and glue, J. Reine Angew. Math., Volume 658 (2011), pp. 1-25 | DOI | MR | Zbl
[8] Automorphisms of projective surfaces with minimum entropy, Invent. Math., Volume 203 (2016) no. 1, pp. 179-215 | DOI | MR | Zbl
[9] Integral Symmetric bilinear forms and some of their applications, Math. USSR, Izv., Volume 14 (1980), pp. 103-167 | DOI | Zbl
[10] Free Automorphisms of positive entropy on smooth Kähler surfaces, Algebraic geometry in East Asia – Taipei 2011 (Advanced Studies in Pure Mathematics), Volume 65, Mathematical Society of Japan, 2015, pp. 187-199 | DOI | Zbl
[11] Torelli’s theorem for algebraic surfaces of type K3, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 35 (1971), pp. 530-572
[12] Salem numbers and automorphisms of complex surfaces, Math. Res. Lett., Volume 19 (2012) no. 2, pp. 475-482 | DOI | MR | Zbl
[13] Salem numbers and automorphisms of abelian surfaces, Osaka J. Math., Volume 54 (2017) no. 1, pp. 1-15 | MR | Zbl
[14] Algebraic numbers and Fourier analysis, The Wadsworth Mathematics Series, Wadsworth International Group, 1983 | MR
[15] Volume growth and entropy, Isr. J. Math., Volume 57 (1987), pp. 285-300 | DOI | MR
[16] Automorphismes loxodromiques de surfaces abèliennes rèelles, Ann. Fac. Sci. Toulouse, Math., Volume 28 (2019) no. 1, pp. 109-127 | DOI | MR | Numdam | Zbl
Cité par Sources :





