Article de recherche - Théorie des nombres
On a problem of Nathanson related to minimal asymptotic bases of order h
Comptes Rendus. Mathématique, Tome 362 (2024) no. G1, pp. 71-76

For integer h2 and A, we define hA to be the set of all integers which can be written as a sum of h, not necessarily distinct, elements of A. The set A is called an asymptotic basis of order h if nhA for all sufficiently large integers n. An asymptotic basis A of order h is minimal if no proper subset of A is an asymptotic basis of order h. For W, denote by * (W) the set of all finite, nonempty subsets of W. Let A(W) be the set of all numbers of the form fF 2 f , where F * (W). In this paper, we give some characterizations of the partitions =W 1 W h with the property that A=A(W 1 )A(W h ) is a minimal asymptotic basis of order h. This generalizes a result of Chen and Chen, recent result of Ling and Tang, and also recent result of Sun.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.530
Classification : 11B34
Keywords: Asymptotic bases, minimal asymptotic bases, binary representation

Chen, Shi-Qiang  1   ; Sándor, Csaba  2 , 3 , 4   ; Yang, Quan-Hui  5

1 School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, P. R. China
2 Department of Stochastics, Institute of Mathematics, BudapestUniversity of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
3 Department of Computer Science and Information Theory, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
4 MTA-BME Lendület Arithmetic Combinatorics Research Group, ELKH, Műegyetem rkp. 3., H-1111 Budapest, Hungary
5 School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G1_71_0,
     author = {Chen, Shi-Qiang and S\'andor, Csaba and Yang, Quan-Hui},
     title = {On a problem of {Nathanson} related to minimal asymptotic bases of order $h$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {71--76},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G1},
     doi = {10.5802/crmath.530},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.530/}
}
TY  - JOUR
AU  - Chen, Shi-Qiang
AU  - Sándor, Csaba
AU  - Yang, Quan-Hui
TI  - On a problem of Nathanson related to minimal asymptotic bases of order $h$
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 71
EP  - 76
VL  - 362
IS  - G1
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.530/
DO  - 10.5802/crmath.530
LA  - en
ID  - CRMATH_2024__362_G1_71_0
ER  - 
%0 Journal Article
%A Chen, Shi-Qiang
%A Sándor, Csaba
%A Yang, Quan-Hui
%T On a problem of Nathanson related to minimal asymptotic bases of order $h$
%J Comptes Rendus. Mathématique
%D 2024
%P 71-76
%V 362
%N G1
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.530/
%R 10.5802/crmath.530
%G en
%F CRMATH_2024__362_G1_71_0
Chen, Shi-Qiang; Sándor, Csaba; Yang, Quan-Hui. On a problem of Nathanson related to minimal asymptotic bases of order $h$. Comptes Rendus. Mathématique, Tome 362 (2024) no. G1, pp. 71-76. doi: 10.5802/crmath.530

[1] Chen, Feng Juan; Chen, Yong-Gao On minimal asymptotic bases, Eur. J. Comb., Volume 32 (2011) no. 8, pp. 1329-1335 | DOI | MR | Zbl

[2] Chen, Yong-Gao; Tang, Min On a problem of Nathanson, Acta Arith., Volume 185 (2018) no. 3, pp. 275-280 | DOI | MR | Zbl

[3] Erdős, Paul; Nathanson, Melvyn B. Minimal asymptotic bases for the natural numbers, J. Number Theory, Volume 12 (1980), pp. 154-159 | DOI | MR | Zbl

[4] Härtter, Erich Ein Beitrag zur Theorie der Minimalbasen, J. Reine Angew. Math., Volume 196 (1956), pp. 170-204 | DOI | MR | Zbl

[5] Jańczak, Miroslawa; Schoen, Tomasz Dense minimal asymptotic bases of order two, J. Number Theory, Volume 130 (2010) no. 3, pp. 580-585 | DOI | MR | Zbl

[6] Jia, Xingde; Nathanson, Melvyn B. A simple construction of minimal asymptotic bases, Acta Arith., Volume 52 no. 2, pp. 95-101 | MR | Zbl

[7] Ling, Deng-Rong; Tang, Min Some remarks on minimal asymptotic bases of order three, Bull. Aust. Math. Soc., Volume 102 (2020) no. 1, pp. 21-30 | Zbl | DOI | MR

[8] Nathanson, Melvyn B. Minimal bases and powers of 2, Acta Arith., Volume 49 (1988) no. 5, pp. 525-532 | DOI | MR | Zbl

[9] Nathanson, Melvyn B.; Sárközy, András On the maximum density of minimal asymptotic bases, Proc. Am. Math. Soc., Volume 105 (1989) no. 1, pp. 31-33 | DOI | MR | Zbl

[10] Stöhr, Alfred Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe II, J. Reine Angew. Math., Volume 194 (1955), pp. 40-65 | DOI

[11] Sun, Cui-Fang On a problem of Nathanson on minimal asymptotic bases, J. Number Theory, Volume 218 (2021), pp. 152-160 | MR | Zbl

[12] Tang, Min; Ling, Deng-Rong On asymptotic bases and minimal asymptotic bases, Colloq. Math., Volume 170 (2022) no. 1, pp. 65-77 | DOI | MR | Zbl

Cité par Sources :