We prove that a transversely product component of the singular set of a holomorphic foliation on is necessarily a Kupka component.
Révisé le :
Accepté le :
Publié le :
Rosas, Rudy 1
CC-BY 4.0
@article{CRMATH_2023__361_G11_1785_0,
author = {Rosas, Rudy},
title = {Transversely product singularities of foliations in projective spaces},
journal = {Comptes Rendus. Math\'ematique},
pages = {1785--1787},
year = {2023},
publisher = {Acad\'emie des sciences, Paris},
volume = {361},
number = {G11},
doi = {10.5802/crmath.528},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.528/}
}
TY - JOUR AU - Rosas, Rudy TI - Transversely product singularities of foliations in projective spaces JO - Comptes Rendus. Mathématique PY - 2023 SP - 1785 EP - 1787 VL - 361 IS - G11 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.528/ DO - 10.5802/crmath.528 LA - en ID - CRMATH_2023__361_G11_1785_0 ER -
%0 Journal Article %A Rosas, Rudy %T Transversely product singularities of foliations in projective spaces %J Comptes Rendus. Mathématique %D 2023 %P 1785-1787 %V 361 %N G11 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.528/ %R 10.5802/crmath.528 %G en %F CRMATH_2023__361_G11_1785_0
Rosas, Rudy. Transversely product singularities of foliations in projective spaces. Comptes Rendus. Mathématique, Tome 361 (2023) no. G11, pp. 1785-1787. doi: 10.5802/crmath.528
[1] Sur les feuilletages de l’espace projective ayant une composante de Kupka, Enseign. Math., Volume 55 (2009) no. 3-4, pp. 227-234 | DOI | Zbl
[2] Foliations with a Kupka component on Algebraic Manifolds, Bol. Soc. Bras. Mat., Volume 30 (1999) no. 2, pp. 183-197 | DOI | MR | Zbl
[3] Foliations of codimension greater than one with a Kupka component, Qual. Theory Dyn. Syst., Volume 8 (2009) no. 2, pp. 241-253 | Zbl | DOI | MR
[4] Foliations with a radial Kupka set on projective spaces, Bull. Braz. Math. Soc. (N.S.), Volume 47 (2016) no. 4, pp. 1071-1083 | DOI | MR | Zbl
[5] Higher codimensional foliations with Kupka singularities, Int. J. Math., Volume 28 (2017) no. 3, 1750019, 29 pages | MR | Zbl
[6] Codimension-one foliations in , , with Kupka components, Complex analytic methods in dynamical systems (Astérisque), Volume 222, Société Mathématique de France, 1994, pp. 93-132 | Zbl
[7] The singularities of integrable structurally stable pfaffian forms, Proc. Natl. Acad. Sci. USA, Volume 52 (1964), pp. 1431-1432 | DOI | MR | Zbl
[8] Local transversely product singularities, Ann. Henri Lebesgue, Volume 4 (2021), pp. 485-502 | DOI | MR | Numdam | Zbl
[9] Structural stability of integrable differential forms, Geometry and Topology (Lecture Notes in Mathematics), Springer, 1977, pp. 395-428 | DOI | MR | Zbl
Cité par Sources :





