Article de recherche - Géométrie algébrique
On equivariant bundles and their moduli spaces
[Sur torseurs équivariants et leur espaces des modules]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G1, pp. 55-62

Let G be an algebraic group and Γ a finite subgroup of automorphisms of G. Fix also a possibly ramified Γ-covering X ˜X. In this setting one may define the notion of (Γ,G)-bundles over X ˜ and, in this paper, we give a description of these objects in terms of -bundles on X, for an appropriate group over X which depends on the local type of the (Γ,G)-bundles we intend to parametrize. This extends, and along the way clarifies, an earlier work of Balaji and Seshadri.

Soit G un groupe algébrique et Γ un sous-groupe fini d’automorphismes de G. Nous fixons également un Γ-revêtement éventuellement ramifié X ˜X. Dans ce cadre, on peut définir la notion de (Γ,G)-fibré sur X ˜ et, dans cet article, nous donnons une description de ces objets en termes de -fibrés sur X, pour un groupe sur X qui dépend du type local des (Γ,G)-fibrés que nous avons l’intention de paramétrer. Ceci étend, et en même temps clarifie, un travail antérieur de Balaji et Seshadri.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.524

Damiolini, Chiara  1 , 2

1 Department of Mathematics, University of Pennsylvania, Philadelphia, USA
2 Department of Mathematics, University of Texas at Austin, Austin, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G1_55_0,
     author = {Damiolini, Chiara},
     title = {On equivariant bundles and their moduli spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {55--62},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G1},
     doi = {10.5802/crmath.524},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.524/}
}
TY  - JOUR
AU  - Damiolini, Chiara
TI  - On equivariant bundles and their moduli spaces
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 55
EP  - 62
VL  - 362
IS  - G1
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.524/
DO  - 10.5802/crmath.524
LA  - en
ID  - CRMATH_2024__362_G1_55_0
ER  - 
%0 Journal Article
%A Damiolini, Chiara
%T On equivariant bundles and their moduli spaces
%J Comptes Rendus. Mathématique
%D 2024
%P 55-62
%V 362
%N G1
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.524/
%R 10.5802/crmath.524
%G en
%F CRMATH_2024__362_G1_55_0
Damiolini, Chiara. On equivariant bundles and their moduli spaces. Comptes Rendus. Mathématique, Tome 362 (2024) no. G1, pp. 55-62. doi: 10.5802/crmath.524

[1] Balaji, Vikraman; Seshadri, Conjeeveram S. Moduli of parahoric 𝒢-torsors on a compact Riemann surface, J. Algebr. Geom., Volume 24 (2015) no. 1, pp. 1-49 | MR | Zbl | DOI

[2] Beauville, Arnaud Vector bundles on Riemann surfaces and conformal field theory, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993) (Mathematical Physics Studies), Volume 19, Kluwer Academic Publishers, 1993, pp. 145-166 | Zbl | MR

[3] Beauville, Arnaud; Laszlo, Yves Conformal blocks and generalized theta functions, Commun. Math. Phys., Volume 164 (1994) no. 2, pp. 385-419 | DOI | MR | Zbl

[4] Bosch, Siegfried; Lütkebohmert, Werner; Raynaud, Michel Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete, 21, Springer, 1990, x+325 pages | DOI

[5] Bruhat, François; Tits, Jacques Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Publ. Math., Inst. Hautes Étud. Sci., Volume 60 (1984), pp. 197-376

[6] Damiolini, Chiara Conformal blocks attached to twisted groups, Math. Z., Volume 295 (2020) no. 3-4, pp. 1643-1681 | MR | Zbl | DOI

[7] Damiolini, Chiara; Hong, Jiuzu Local types of (γ,g)-bundles and parahoric group schemes, Proc. Lond. Math. Soc., Volume 127 (2023) no. 2, pp. 261-294 | DOI | MR | Zbl

[8] Edixhoven, Bas Néron models and tame ramification, Compos. Math., Volume 81 (1992) no. 3, pp. 291-306 | Numdam | Zbl

[9] Grothendieck, Alexander Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Publ. Math., Inst. Hautes Étud. Sci., Volume 32 (1967), pp. 1-361 (rédigé avec la colloboration de J. Dieudonné) | Numdam | Zbl

[10] Heinloth, Jochen Uniformization of 𝒢-bundles, Math. Ann., Volume 347 (2010) no. 3, pp. 499-528 | DOI | MR | Zbl

[11] Hong, Jiuzu; Kumar, Shrawan Conformal blocks for galois covers of algebraic curves, Compos. Math., Volume 159 (2023) no. 10, pp. 2191-2259 | DOI | MR | Zbl

[12] Kumar, Shrawan; Narasimhan, Mudumbai S.; Ramanathan, Annamalai Infinite Grassmannians and moduli spaces of G-bundles, Math. Ann., Volume 300 (1994) no. 1, pp. 41-75 | DOI | MR | Zbl

[13] Laszlo, Yves; Sorger, Christoph The line bundles on the moduli of parabolic G-bundles over curves and their sections, Ann. Sci. Éc. Norm. Supér., Volume 30 (1997) no. 4, pp. 499-525 | DOI | MR | Numdam | Zbl

[14] Mehta, Vikram B.; Seshadri, Conjeeveram S. Moduli of vector bundles on curves with parabolic structures, Math. Ann., Volume 248 (1980) no. 3, pp. 205-239 | DOI | MR | Zbl

[15] Pappas, Georgios; Rapoport, Michael On tamely ramified 𝒢-bundles on curves (2022) | arXiv

[16] Pauly, Christian Espaces de modules de fibrés paraboliques et blocs conformes., Duke Math. J., Volume 84 (1996) no. 1, pp. 217-235 | Zbl

[17] Ramanan, Sundararaman The moduli spaces of vector bundles over an algebraic curve, Math. Ann., Volume 200 (1973), pp. 69-84 | DOI | MR | Zbl

[18] Sorger, Christoph La formule de Verlinde, Séminaire Bourbaki. Volume 1994/95. Exposés 790-804 (Astérisque), Volume 237, Société Mathématique de France, 1996, pp. 87-114 (Exp. No. 794) | MR | Numdam | Zbl

[19] Zelaci, Hacen Moduli spaces of anti-invariant vector bundles and twisted conformal blocks, Math. Res. Lett., Volume 26 (2019) no. 6, pp. 1849-1875 | DOI | MR | Zbl

Cité par Sources :