Article de recherche - Théorie des nombres
On subsets of asymptotic bases
Comptes Rendus. Mathématique, Tome 362 (2024) no. G1, pp. 45-49

Let h2 be an integer. In this paper, we prove that if A is an asymptotic basis of order h and B is a nonempty subset of A, then either there exists a finite subset F of A such that FB is an asymptotic basis of order h, or for any ε>0, there exists a finite subset F ε of A such that d L (h(F ε B))hd L (B)-ε, where d L (X) denotes the lower asymptotic density of X and hX denotes the set of all x 1 ++x h with x i X (1ih). This generalizes a result of Nathanson and Sárközy.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.513
Classification : 11B13, 11B05, 11P99

Xu, Ji-Zhen  1 , 2   ; Chen, Yong-Gao  1

1 School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, People’s Republic of China
2 Nanjing Vocational College of Information Technology,Nanjing 210023, People’s Republic of China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G1_45_0,
     author = {Xu, Ji-Zhen and Chen, Yong-Gao},
     title = {On subsets of asymptotic bases},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {45--49},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G1},
     doi = {10.5802/crmath.513},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.513/}
}
TY  - JOUR
AU  - Xu, Ji-Zhen
AU  - Chen, Yong-Gao
TI  - On subsets of asymptotic bases
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 45
EP  - 49
VL  - 362
IS  - G1
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.513/
DO  - 10.5802/crmath.513
LA  - en
ID  - CRMATH_2024__362_G1_45_0
ER  - 
%0 Journal Article
%A Xu, Ji-Zhen
%A Chen, Yong-Gao
%T On subsets of asymptotic bases
%J Comptes Rendus. Mathématique
%D 2024
%P 45-49
%V 362
%N G1
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.513/
%R 10.5802/crmath.513
%G en
%F CRMATH_2024__362_G1_45_0
Xu, Ji-Zhen; Chen, Yong-Gao. On subsets of asymptotic bases. Comptes Rendus. Mathématique, Tome 362 (2024) no. G1, pp. 45-49. doi: 10.5802/crmath.513

[1] Chen, Feng-Juan; Chen, Yong-Gao On minimal asymptotic bases, Eur. J. Comb., Volume 32 (2011) no. 8, pp. 1329-1335 | Zbl | DOI | MR

[2] Chen, Yong-Gao; Tang, Min On a problem of Nathanson, Acta Arith., Volume 185 (2018) no. 3, pp. 275-280 | DOI | MR | Zbl

[3] Erdős, Paul; Nathanson, Melvyn B. Minimal asymptotic bases with prescribed densities, Ill. J. Math., Volume 32 (1988) no. 3, pp. 562-574 | MR | Zbl

[4] Härtter, Erich Ein Beitrag zur Theorie der Minimalbasen, J. Reine Angew. Math., Volume 196 (1956), pp. 170-204 | DOI | MR | Zbl

[5] Jańczak, Miroslawa; Schoen, Tomasz Dense minimal asymptotic bases of order 2, J. Number Theory, Volume 130 (2010) no. 3, pp. 580-585 | DOI | MR | Zbl

[6] Kneser, Martin Abschätzung der asymptotischen Dichte von Summenmengen, Math. Z., Volume 58 (1953), pp. 459-484 | DOI | Zbl

[7] Nathanson, Melvyn B. Minimal bases and maximal nonbases in additive number theory, J. Number Theory, Volume 6 (1974), pp. 324-333 | DOI | MR | Zbl

[8] Nathanson, Melvyn B. Minimal bases and powers of 2, Acta Arith., Volume 51 (1988) no. 5, pp. 95-102

[9] Nathanson, Melvyn B.; Sárközy, András On the maximum density of minimal asymptotic bases, Proc. Am. Math. Soc., Volume 105 (1989) no. 1, pp. 31-33 | DOI | MR | Zbl

[10] Stöhr, Alfred Gelöste und ungelöste Fragen über Basen der natüurlichen Zahlenreihe, J. Reine Angew. Math., Volume 194 (1955), pp. 111-140 | DOI | Zbl

[11] Sun, Cui-Fang On a problem of Nathanson on minimal asymptotic bases, J. Number Theory, Volume 218 (2021), pp. 152-160 | MR | Zbl

[12] Tang, Min; Ling, Deng-Rong On asymptotic bases and minimal asymptotic bases, Colloq. Math., Volume 170 (2022) no. 1, pp. 65-77 | DOI | MR | Zbl

Cité par Sources :