[Les surfaces de type infini sont non-Hopfian]
We show that finite-type surfaces are characterized by a topological analogue of the Hopf property. Namely, an oriented surface is of finite-type if and only if every proper map of degree one is homotopic to a homeomorphism.
Nous montrons que les surfaces de type fini sont caractérisées par un analogue topologique de la propriété de Hopf. A savoir, une surface orientée est de type fini si et seulement si toute application propre de degré un est homotope à un homéomorphisme.
Révisé le :
Accepté le :
Publié le :
Das, Sumanta 1 ; Gadgil, Siddhartha 1
CC-BY 4.0
@article{CRMATH_2023__361_G8_1349_0,
author = {Das, Sumanta and Gadgil, Siddhartha},
title = {Surfaces of infinite-type are {non-Hopfian}},
journal = {Comptes Rendus. Math\'ematique},
pages = {1349--1356},
year = {2023},
publisher = {Acad\'emie des sciences, Paris},
volume = {361},
number = {G8},
doi = {10.5802/crmath.504},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.504/}
}
TY - JOUR AU - Das, Sumanta AU - Gadgil, Siddhartha TI - Surfaces of infinite-type are non-Hopfian JO - Comptes Rendus. Mathématique PY - 2023 SP - 1349 EP - 1356 VL - 361 IS - G8 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.504/ DO - 10.5802/crmath.504 LA - en ID - CRMATH_2023__361_G8_1349_0 ER -
%0 Journal Article %A Das, Sumanta %A Gadgil, Siddhartha %T Surfaces of infinite-type are non-Hopfian %J Comptes Rendus. Mathématique %D 2023 %P 1349-1356 %V 361 %N G8 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.504/ %R 10.5802/crmath.504 %G en %F CRMATH_2023__361_G8_1349_0
Das, Sumanta; Gadgil, Siddhartha. Surfaces of infinite-type are non-Hopfian. Comptes Rendus. Mathématique, Tome 361 (2023) no. G8, pp. 1349-1356. doi: 10.5802/crmath.504
[1] Curves on -manifolds and isotopies, Acta Math., Volume 115 (1966), pp. 83-107 | DOI | MR | Zbl
[2] The degree of a map, Proc. Lond. Math. Soc., Volume 16 (1966), pp. 369-383 | DOI | MR | Zbl
[3] Homeomorphic subsurfaces and the omnipresent arcs, Ann. Henri Lebesgue, Volume 4 (2021), pp. 1565-1593 | DOI | MR | Numdam | Zbl
[4] Residual finiteness of surface groups, Proc. Am. Math. Soc., Volume 32 (1972), p. 323 | DOI | MR | Zbl
[5] Geometric topology in dimensions and , Graduate Texts in Mathematics, 47, Springer, 1977, x+262 pages | MR | DOI
[6] When proper maps are closed, Proc. Am. Math. Soc., Volume 24 (1970), pp. 835-836 | MR | Zbl
[7] On the classification of noncompact surfaces, Trans. Am. Math. Soc., Volume 106 (1963), pp. 259-269 | DOI | MR | Zbl
Cité par Sources :





