Analyse harmonique, Équations aux dérivées partielles
The Caffarelli–Kohn–Nirenberg inequalities for radial functions
Comptes Rendus. Mathématique, Tome 361 (2023) no. G7, pp. 1175-1189

We establish the full range of the Caffarelli–Kohn–Nirenberg inequalities for radial functions in the Sobolev and the fractional Sobolev spaces of order 0<s1. In particular, we show that the range of the parameters for radial functions is strictly larger than the one without symmetric assumption. Previous known results reveal only some special ranges of parameters even in the case s=1. The known proofs used the Riesz potential and inequalities for fractional integrations. Our proof is new, elementary, and is based on one-dimensional case. Applications on compact embeddings are also mentioned.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.503
Classification : 26D10, 26A54
Keywords: Caffarelli–Kohn–Nirenberg inequality, radial functions, compact embedding

Mallick, Arka 1 ; Nguyen, Hoai-Minh 2

1 Department of Mathematics, IISc, Bengaluru, India
2 Laboratoire Jacques Louis Lions, Sorbonne Université, Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G7_1175_0,
     author = {Mallick, Arka and Nguyen, Hoai-Minh},
     title = {The {Caffarelli{\textendash}Kohn{\textendash}Nirenberg} inequalities for radial functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1175--1189},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G7},
     doi = {10.5802/crmath.503},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.503/}
}
TY  - JOUR
AU  - Mallick, Arka
AU  - Nguyen, Hoai-Minh
TI  - The Caffarelli–Kohn–Nirenberg inequalities for radial functions
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1175
EP  - 1189
VL  - 361
IS  - G7
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.503/
DO  - 10.5802/crmath.503
LA  - en
ID  - CRMATH_2023__361_G7_1175_0
ER  - 
%0 Journal Article
%A Mallick, Arka
%A Nguyen, Hoai-Minh
%T The Caffarelli–Kohn–Nirenberg inequalities for radial functions
%J Comptes Rendus. Mathématique
%D 2023
%P 1175-1189
%V 361
%N G7
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.503/
%R 10.5802/crmath.503
%G en
%F CRMATH_2023__361_G7_1175_0
Mallick, Arka; Nguyen, Hoai-Minh. The Caffarelli–Kohn–Nirenberg inequalities for radial functions. Comptes Rendus. Mathématique, Tome 361 (2023) no. G7, pp. 1175-1189. doi: 10.5802/crmath.503

[1] Abdellaoui, Boumediene; Bentifour, Rachid Caffarelli–Kohn–Nirenberg type inequalities of fractional order with applications, J. Funct. Anal., Volume 272 (2017) no. 10, pp. 3998-4029 | Zbl | DOI | MR

[2] Bellazzini, Jacopo; Frank, Rupert L.; Visciglia, Nicola Maximizers for Gagliardo–Nirenberg inequalities and related non-local problems, Math. Ann., Volume 360 (2014) no. 3-4, pp. 653-673 | DOI | MR | Zbl

[3] Bellazzini, Jacopo; Ghimenti, Marco; Mercuri, Carlo; Moroz, Vitaly; Van Schaftingen, Jean Sharp Gagliardo–Nirenberg inequalities in fractional Coulomb–Sobolev spaces, Trans. Am. Math. Soc., Volume 370 (2018) no. 11, pp. 8285-8310 | MR | Zbl | DOI

[4] Bellazzini, Jacopo; Ghimenti, Marco; Ozawa, Tohru Sharp lower bounds for Coulomb energy, Math. Res. Lett., Volume 23 (2016) no. 3, pp. 621-632 | DOI | Zbl | MR

[5] Berestycki, Henri; Lions, Pierre-Louis Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., Volume 82 (1983) no. 4, pp. 313-345 | DOI | MR | Zbl

[6] Bourgain, Jean; Brezis, Haïm; Mironescu, Petru Another look at Sobolev spaces, Optimal control and partial differential equations, IOS Press, 2001, pp. 439-455 | Zbl

[7] Bourgain, Jean; Nguyen, Hoai-Minh A new characterization of Sobolev spaces, C. R. Math. Acad. Sci. Paris, Volume 343 (2006) no. 2, pp. 75-80 | DOI | MR | Numdam | Zbl

[8] Brezis, Haïm How to recognize constant functions. A connections with Sobolev spaces, Usp. Mat. Nauk, Volume 57 (2002), pp. 59-74 | MR

[9] Brezis, Haïm; Nguyen, Hoai-Minh Non-local functionals related to the total variation and connections with image processing, Ann. PDE, Volume 4 (2018) no. 1, 9, 77 pages | MR | Zbl

[10] Brezis, Haïm; Van Schaftingen, Jean; Yung, Po-Lam A surprising formula for Sobolev norms, Proc. Natl. Acad. Sci. USA, Volume 118 (2021) no. 8, e2025254118 | MR

[11] Caffarelli, Luis A.; Kohn, Robert V.; Nirenberg, Louis Partial regularity of suitable weak solutions of the Navier-Stokes equations, Pure Appl. Math., Volume 35 (1982) no. 6, pp. 771-831 | DOI | MR | Zbl

[12] Caffarelli, Luis A.; Kohn, Robert V.; Nirenberg, Louis First order interpolation inequalities with weights, Compos. Math., Volume 53 (1984) no. 3, pp. 259-275 | Numdam | Zbl | MR

[13] Catrina, Florin; Wang, Zhi-Qiang On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions, Pure Appl. Math., Volume 54 (2001) no. 2, pp. 229-258 | DOI | MR | Zbl

[14] Chou, Kai-Seng; Chu, Chiu-Wing On the best constant for a weighted Sobolev-Hardy inequality, J. Lond. Math. Soc., Volume 48 (1993) no. 1, pp. 137-151 | MR | DOI | Zbl

[15] De Nápoli, Pablo L.; Drelichman, Irene; Durán, Ricardo G. Improved Caffarelli–Kohn–Nirenberg and trace inequalities for radial functions, Commun. Pure Appl. Anal., Volume 11 (2012) no. 5, pp. 1629-1642 | MR | Zbl

[16] Felli, Veronica; Schneider, Matthias Perturbation results of critical elliptic equations of Caffarelli–Kohn–Nirenberg type, J. Differ. Equations, Volume 191 (2003) no. 1, pp. 121-142 | MR | Zbl | DOI

[17] Frank, Rupert L.; Seiringer, Robert Non-linear ground state representations and sharp hardy inequalities, J. Funct. Anal., Volume 255 (2008) no. 12, pp. 3407-3430 | DOI | MR | Zbl

[18] Lieb, Elliott H. Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies Appl. Math., Volume 57 (1977), pp. 93-105 | Zbl | DOI

[19] Lions, Pierre-Louis Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal., Volume 49 (1982) no. 3, pp. 315-334 | DOI | Zbl

[20] Mallick, Arka; Nguyen, Hoai-Minh Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities associated with Coulomb–Sobolev spaces, J. Funct. Anal., Volume 283 (2022) no. 10, 109662, 33 pages | MR | Zbl

[21] Mazýa, Vladimir Gilelevich; Shaposhnikova, Tatyana O. On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., Volume 195 (2002) no. 2, pp. 230-238 | MR

[22] Nguyen, Hoai-Minh Some new characterizations of Sobolev spaces, J. Funct. Anal., Volume 237 (2006) no. 2, pp. 689-720 | DOI | MR | Zbl

[23] Nguyen, Hoai-Minh Some inequalities related to Sobolev norms, Calc. Var. Partial Differ. Equ., Volume 41 (2011) no. 3-4, pp. 483-509 | DOI | MR | Zbl

[24] Nguyen, Hoai-Minh; Squassina, Marco Fractional Caffarelli–Kohn–Nirenberg inequalities, J. Funct. Anal., Volume 274 (2018) no. 9, pp. 2661-2672 | DOI | MR | Zbl

[25] Nguyen, Hoai-Minh; Squassina, Marco On Hardy and Caffarelli-Kohn-Nirenberg inequalities, J. Anal. Math., Volume 139 (2019) no. 2, pp. 773-797 | Zbl | DOI | MR

[26] Rubin, Boris One-dimensional representation, inversion and certain properties of Riesz potentials of radial functions, Mat. Zametki, Volume 34 (1983) no. 4, pp. 521-533 | Zbl | MR

[27] Sickel, Winfried; Skrzypczak, Leszek Radial subspaces of Besov and Lizorkin–Triebel classes: extended Strauss lemma and compactness of embeddings, J. Fourier Anal. Appl., Volume 6 (2000) no. 6, pp. 639-662 | Zbl | DOI | MR

[28] Strauss, Walter A. Existence of solitary waves in higher dimensions, Commun. Math. Phys., Volume 55 (1977) no. 2, pp. 149-162 | DOI | Zbl | MR

Cité par Sources :