[Quelques remarques sur le théorème ergodique pour les -statistiques]
In this note, we investigate the convergence of a -statistic of order two having stationary ergodic data. We will find sufficient conditions for the almost sure and convergence and present some counter-examples showing that the -statistic itself might fail to converge: centering is needed as well as finiteness of .
Dans cette note, nous étudions le théorème ergodique pour des -statisques d’ordre 2 dont les données sont issues d’une suite strictement stationnaire. Nous présentons des conditions suffisantes pour la convergence presque sûre et dans ainsi que des contre-exemples montrant que la -statistique seule peut ne pas converger : un terme de centrage est requis ainsi que la finitude de .
Accepté le :
Publié le :
Dehling, Herold 1 ; Giraudo, Davide 2 ; Volný, Dalibor 3
CC-BY 4.0
@article{CRMATH_2023__361_G9_1511_0,
author = {Dehling, Herold and Giraudo, Davide and Voln\'y, Dalibor},
title = {Some remarks on the ergodic theorem for $U$-statistics},
journal = {Comptes Rendus. Math\'ematique},
pages = {1511--1519},
year = {2023},
publisher = {Acad\'emie des sciences, Paris},
volume = {361},
number = {G9},
doi = {10.5802/crmath.494},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.494/}
}
TY - JOUR AU - Dehling, Herold AU - Giraudo, Davide AU - Volný, Dalibor TI - Some remarks on the ergodic theorem for $U$-statistics JO - Comptes Rendus. Mathématique PY - 2023 SP - 1511 EP - 1519 VL - 361 IS - G9 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.494/ DO - 10.5802/crmath.494 LA - en ID - CRMATH_2023__361_G9_1511_0 ER -
%0 Journal Article %A Dehling, Herold %A Giraudo, Davide %A Volný, Dalibor %T Some remarks on the ergodic theorem for $U$-statistics %J Comptes Rendus. Mathématique %D 2023 %P 1511-1519 %V 361 %N G9 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.494/ %R 10.5802/crmath.494 %G en %F CRMATH_2023__361_G9_1511_0
Dehling, Herold; Giraudo, Davide; Volný, Dalibor. Some remarks on the ergodic theorem for $U$-statistics. Comptes Rendus. Mathématique, Tome 361 (2023) no. G9, pp. 1511-1519. doi: 10.5802/crmath.494
[1] Strong laws for - and -statistics, Trans. Am. Math. Soc., Volume 348 (1996) no. 7, pp. 2845-2866 | DOI | MR
[2] The law of large numbers for -statistics under absolute regularity, Electron. Commun. Probab., Volume 3 (1998), pp. 13-19 | DOI | MR | Zbl
[3] Convergence of probability measures, John Wiley & Sons, 1968, xii+253 pages | MR | Zbl
[4] Consistency of the Takens estimator for the correlation dimension, Ann. Appl. Probab., Volume 9 (1999) no. 2, pp. 376-390 | DOI | MR
[5] From dimension estimation to asymptotics of dependent -statistics, Limit theorems in probability and statistics, Vol. I (Balatonlelle, 1999), János Bolyai Mathematical Society, 2002, pp. 201-234 | MR
[6] The strong law of large numbers for -statistics, University of North Carolina Institute of Statistics Mimeograph Series, 302, 1961
[7] Dependent central limit theorems and invariance principles, Ann. Probab., Volume 2 (1974), pp. 620-628 | DOI | MR | Zbl
[8] Weak convergence of measures on separable metric spaces, Sankhyā, Ser. A, Volume 19 (1958), pp. 15-22 | MR | Zbl
Cité par Sources :





