Équations aux dérivées partielles
Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity
[Lois de conservation non locales discontinues et ODE EDO discontinues correspondantes connexes – Existence, unicité, stabilité et régularité]
Comptes Rendus. Mathématique, Tome 361 (2023) no. G11, pp. 1723-1760

We study nonlocal conservation laws with a discontinuous flux function of regularity L () in the spatial variable and show existence and uniqueness of weak solutions in C[0,T] ; L loc 1 , as well as related maximum principles. We achieve this well-posedness by a proper reformulation in terms of a fixed-point problem. This fixed-point problem itself necessitates the study of existence, uniqueness and stability of a class of discontinuous ordinary differential equations. On the ODE level, we compare the solution type defined here with the well-known Carathéodory and Filippov solutions.

Nous étudions des lois de conservation non locales avec une fonction de flux discontinue de régularité spatiale L () dans la variable spatiale et montrons l’existence et l’unicité de solutions faibles dans C[0,T] ; L loc 1 , ainsi que les principes de maxima connexes des principes de maximum correspondants. Nous obtenons ce caractère bien posé par une reformulation appropriée en termes d’un problème de point fixe. Nous obtenons ce caractère bien posé en reformulant de façon appropriée le problème comme un problème de point fixe. Ce problème de point fixe nécessite lui-même l’étude de l’existence, de l’unicité et de la stabilité d’une classe d’équations différentielles ordinaires discontinues. Au niveau des ODE EDO, nous comparons le type de solution défini ici avec les solutions bien connues de Carathéodory et de Filippov.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.490
Classification : 34A12, 34A36, 35L03, 35L65, 35Q99, 35R09, 45K05

Keimer, Alexander 1, 2 ; Pflug, Lukas 3, 4

1 Institute of Transportation Studies (ITS), University of California, Berkeley, 94720 Berkeley, California, USA
2 Department of Mathematics, FAU Erlangen-Nürnberg, Cauerstraße 11, 91058 Erlangen, Germany
3 Friedrich-Alexander-Universität Erlangen-Nürnberg, FAU Competence Center Scientific Computing, Martensstr. 5a, 91058 Erlangen, Germany
4 Department of Mathematics, Chair of Applied Mathematics (Continuous Optimization), Cauerstraße 11, 91058 Erlangen, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G11_1723_0,
     author = {Keimer, Alexander and Pflug, Lukas},
     title = {Discontinuous nonlocal conservation laws and related discontinuous {ODEs} {\textendash} {Existence,} {Uniqueness,} {Stability} and {Regularity}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1723--1760},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G11},
     doi = {10.5802/crmath.490},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.490/}
}
TY  - JOUR
AU  - Keimer, Alexander
AU  - Pflug, Lukas
TI  - Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1723
EP  - 1760
VL  - 361
IS  - G11
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.490/
DO  - 10.5802/crmath.490
LA  - en
ID  - CRMATH_2023__361_G11_1723_0
ER  - 
%0 Journal Article
%A Keimer, Alexander
%A Pflug, Lukas
%T Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity
%J Comptes Rendus. Mathématique
%D 2023
%P 1723-1760
%V 361
%N G11
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.490/
%R 10.5802/crmath.490
%G en
%F CRMATH_2023__361_G11_1723_0
Keimer, Alexander; Pflug, Lukas. Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity. Comptes Rendus. Mathématique, Tome 361 (2023) no. G11, pp. 1723-1760. doi: 10.5802/crmath.490

[1] Ackleh, Azmy S.; Deng, Keng Monotone method for first order nonlocal hyperbolic initial-boundary value problems, Appl. Anal., Volume 67 (1997) no. 3, pp. 283-293 | DOI | MR | Zbl

[2] Adimurthi; Ghoshal, Shyam Sundar; Dutta, Rajib; Gowda, G. D. Veerappa Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux, Commun. Pure Appl. Math., Volume 64 (2011) no. 1, pp. 84-115 | Zbl | DOI | MR

[3] Adimurthi; Jaffré, Jérôme; Gowda, G. D. Veerappa Godunov-type methods for conservation laws with a flux function discontinuous in space, SIAM J. Numer. Anal., Volume 42 (2004) no. 1, pp. 179-208 | DOI | MR | Zbl

[4] Adimurthi; Mishra, Siddhartha; Gowda, G. D. Veerappa Optimal entropy solutions for conservation laws with discontinous flux-functions, J. Hyperbolic Differ. Equ., Volume 02 (2005) no. 04, pp. 783-837 | DOI | Zbl

[5] Adimurthi; Mishra, Siddhartha; Gowda, G. D. Veerappa Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes, Netw. Heterog. Media, Volume 2 (2007) no. 1, pp. 127-157 | MR | Zbl | DOI

[6] Adimurthi; Mishra, Siddhartha; Gowda, G. D. Veerappa Explicit Hopf–Lax type formulas for Hamilton–Jacobi equations and conservation laws with discontinuous coefficients, J. Differ. Equations, Volume 241 (2007) no. 1, pp. 1-31 | DOI | MR | Zbl

[7] Agarwal, Ravi P.; Lakshmikantham, Vangipuram Uniqueness and nonuniqueness criteria for ordinary differential equations, 6, World Scientific, 1993

[8] Aggarwal, Aekta; Colombo, Rinaldo M.; Goatin, Paola Nonlocal systems of conservation laws in several space dimensions, SIAM J. Numer. Anal., Volume 53 (2015) no. 2, pp. 963-983 | DOI | MR | Zbl

[9] Ambrosio, Luigi Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004) no. 2, pp. 227-260 | DOI | MR | Zbl

[10] Ambrosio, Luigi; Crippa, Gianluca Continuity equations and ODE flows with non-smooth velocity, Proc. R. Soc. Edinb., Sect. A, Math., Volume 144 (2014) no. 6, pp. 1191-1244 | MR | Zbl | DOI

[11] Amorim, Paulo On a nonlocal hyperbolic conservation law arising from a gradient constraint problem, Bull. Braz. Math. Soc. (N.S.), Volume 43 (2012) no. 4, pp. 599-614 | DOI | MR | Zbl

[12] Amorim, Paulo; Colombo, Rinaldo M.; Teixeira, Andreia On the numerical integration of scalar nonlocal conservation laws, ESAIM, Math. Model. Numer. Anal., Volume 49 (2015) no. 1, pp. 19-37 | DOI | MR | Numdam | Zbl

[13] Andreianov, Boris; Karlsen, Kenneth H.; Risebro, Nils H. On vanishing viscosity approximation of conservation laws with discontinuous flux, Netw. Heterog. Media, Volume 5 (2010) no. 3, pp. 617-633 | DOI | MR | Zbl

[14] Andreianov, Boris; Karlsen, Kenneth H.; Risebro, Nils H. A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., Volume 201 (2011) no. 1, pp. 27-86 | DOI | MR | Zbl

[15] Audusse, Emmanuel; Perthame, Benoît Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies, Proc. R. Soc. Edinb., Sect. A, Math., Volume 135 (2005) no. 2, pp. 253-265 | DOI | MR | Zbl

[16] Baker, Gregory R.; Li, Xiao; Morlet, Anne C. Analytic structure of two 1D-transport equations with nonlocal fluxes, Physica D, Volume 91 (1996) no. 4, pp. 349-375 | DOI | Zbl

[17] Bayen, Alexandre; Friedrich, Jan; Keimer, Alexander; Pflug, Lukas; Veeravalli, Tanya Modeling multilane traffic with moving obstacles by nonlocal balance laws, SIAM J. Appl. Dyn. Syst., Volume 21 (2022) no. 2, pp. 1495-1538 | DOI | MR | Zbl

[18] Besson, Olivier; Pousin, Jérôme Solutions for Linear Conservation Laws with Velocity Fields in L , Arch. Ration. Mech. Anal., Volume 186 (2007) no. 1, pp. 159-175 | DOI | MR | Zbl

[19] Betancourt, Fernando; Bürger, Raimund; Karlsen, Kenneth H.; Tory, Elmer M. On nonlocal conservation laws modelling sedimentation, Nonlinearity, Volume 24 (2011) no. 3, p. 855 | DOI | MR | Zbl

[20] Binding, Paul The differential equation x ˙=f(x), J. Differ. Equations, Volume 31 (1979) no. 2, pp. 183-199 | DOI | Zbl

[21] Blandin, Sebastien; Goatin, Paola Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., Volume 132 (2016) no. 2, pp. 217-241 | DOI | MR | Zbl

[22] Bouchut, François; James, François One-dimensional transport equations with discontinuous coefficients, Nonlinear Anal., Theory Methods Appl., Volume 32 (1998) no. 7, p. 891 | DOI | MR

[23] Bownds, John M. A uniqueness theorem for y =f(x,y) using a certain factorization of f, J. Differ. Equations, Volume 7 (1970) no. 2, pp. 227-231 | DOI | MR | Zbl

[24] Bressan, Alberto; Shen, Wen Uniqueness for discontinuous ODE and conservation laws, Nonlinear Anal., Theory Methods Appl., Volume 34 (1998) no. 5, pp. 637-652 | DOI | MR | Zbl

[25] Bressan, Alberto; Shen, Wen On traffic flow with nonlocal flux: a relaxation representation, Arch. Ration. Mech. Anal., Volume 237 (2020) no. 3, pp. 1213-1236 | DOI | MR | Zbl

[26] Bressan, Alberto; Shen, Wen Entropy admissibility of the limit solution for a nonlocal model of traffic flow, Commun. Math. Sci., Volume 19 (2021) no. 5, pp. 1447-1450 | DOI | MR | Zbl

[27] Brezis, Haim Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, 2011, xiv+599 pages | DOI

[28] Bürger, Raimund; Karlsen, Kenneth H. Conservation laws with discontinuous flux: a short introduction, J. Eng. Math., Volume 60 (2008) no. 3-4, pp. 241-247 | DOI | MR | Zbl

[29] Bürger, Raimund; Karlsen, Kenneth H.; Towers, John D. An Engquist–Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections, SIAM J. Numer. Anal., Volume 47 (2009) no. 3, pp. 1684-1712 | DOI | MR | Zbl

[30] Chalons, Christophe; Goatin, Paola; Villada, Luis M. High-Order numerical schemes for one-dimensional nonlocal conservation laws, SIAM J. Sci. Comput., Volume 40 (2018) no. 1, p. A288-A305 | DOI | MR | Zbl

[31] Chen, Wenbin; Liu, Chang; Wang, Zhiqiang Global feedback stabilization for a class of nonlocal transport equations: the continuous and discrete case, SIAM J. Control Optim., Volume 55 (2017) no. 2, pp. 760-784 | DOI | MR | Zbl

[32] Chiarello, Felisia A.; Coclite, Giuseppe M. Non-local scalar conservation laws with discontinuous flux, Netw. Heterog. Media, Volume 18 (2023) no. 1, pp. 380-398 | DOI

[33] Chiarello, Felisia A.; Contreras, Harold D.; Villada, Luis M. On existence of entropy solutions for 1D nonlocal conservation laws with space discontinuous flux, J. Eng. Math., Volume 141 (2023), 9 | DOI

[34] Chiarello, Felisia Angela; Goatin, Paola Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, ESAIM, Math. Model. Numer. Anal., Volume 52 (2018) no. 1, pp. 163-180 | DOI | MR | Zbl

[35] Chiarello, Felisia Angela; Goatin, Paola Non-local multi-class traffic flow models, Netw. Heterog. Media, Volume 14 (2019) no. 2, pp. 371-387 | DOI | MR | Zbl

[36] Clop, Albert; Jylhä, Heikki; Mateu, Joan; Orobitg, Joan Well-posedness for the continuity equation for vector fields with suitable modulus of continuity, J. Funct. Anal., Volume 276 (2019) no. 1, pp. 45-77 | Zbl | DOI | MR

[37] Coclite, Giuseppe M.; Coron, Jean-Michel; De Nitti, Nicola; Keimer, Alexander; Pflug, Lukas A general result on the approximation of local conservation laws by nonlocal conservation laws: The singular limit problem for exponential kernels, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 40 (2023) no. 5, pp. 1205-1223 | DOI | MR | Zbl

[38] Coclite, Giuseppe M.; De Nitti, Nicola; Keimer, Alexander; Pflug, Lukas On existence and uniqueness of weak solutions to nonlocal conservation laws with BV kernels, Z. Angew. Math. Phys., Volume 73 (2022) no. 6, 241 | DOI | MR | Zbl

[39] Coddington, Earl A.; Levinson, Norman Theory of ordinary differential equations, McGill-Hill Book Company, 1955

[40] Colombo, Maria; Crippa, Gianluca; Marconi, Elio; Spinolo, Laura V. Local limit of nonlocal traffic models: Convergence results and total variation blow-up, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 38 (2021) no. 5, pp. 1653-1666 | MR | Zbl

[41] Colombo, Maria; Crippa, Gianluca; Spinolo, Laura V. On the singular local limit for conservation laws with nonlocal fluxes, Arch. Ration. Mech. Anal., Volume 233 (2019) no. 3, pp. 1131-1167 | DOI | MR | Zbl

[42] Colombo, Rinaldo M.; Garavello, Mauro; Lécureux-Mercier, Magali A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 4, 1150023, 34 pages | MR | Zbl

[43] Colombo, Rinaldo M.; Guerra, Graziano Hyperbolic balance laws with a non local source, Commun. Partial Differ. Equations, Volume 32 (2007) no. 12, pp. 1917-1939 | DOI | MR | Zbl

[44] Colombo, Rinaldo M.; Lécureux-Mercier, Magali Nonlocal crowd dynamics models for several populations, Acta Math. Sci., Ser. B, Engl. Ed., Volume 32 (2012) no. 1, pp. 177-196 | DOI | MR | Zbl

[45] Colombo, Rinaldo M.; Marcellini, Francesca Nonlocal systems of balance laws in several space dimensions with applications to laser technology, J. Differ. Equations, Volume 259 (2015) no. 11, pp. 6749-6773 | DOI | MR | Zbl

[46] Colombo, Rinaldo M.; Rossi, Elena Nonlocal conservation laws in bounded domains, SIAM J. Math. Anal., Volume 50 (2018) no. 4, pp. 4041-4065 | DOI | MR | Zbl

[47] Coron, Jean-Michel; Kawski, Matthias; Wang, Zhiqiang Analysis of a conservation law modeling a highly re-entrant manufacturing system, Discrete Contin. Dyn. Syst., Ser. B, Volume 14 (2010) no. 4, pp. 1337-1359 | DOI | MR | Zbl

[48] Coron, Jean-Michel; Keimer, Alexander; Pflug, Lukas Nonlocal transport equations – existence and uniqueness of solutions and relation to the corresponding conservation laws, SIAM J. Math. Anal., Volume 52 (2020) no. 6, pp. 5500-5532 | DOI | MR | Zbl

[49] Coron, Jean-Michel; Wang, Zhiqiang Controllability for a scalar conservation law with nonlocal velocity, J. Differ. Equations, Volume 252 (2012) no. 1, pp. 181-201 | DOI | MR | Zbl

[50] Coron, Jean-Michel; Wang, Zhiqiang Output feedback stabilization for a scalar conservation law with a nonlocal velocity, SIAM J. Math. Anal., Volume 45 (2013) no. 5, pp. 2646-2665 | DOI | MR | Zbl

[51] Crippa, Gianluca Lagrangian flows and the one-dimensional Peano phenomenon for ODEs, J. Differ. Equations, Volume 250 (2011) no. 7, pp. 3135-3149 | DOI | MR | Zbl

[52] Crippa, Gianluca; Lécureux-Mercier, Magali Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, NoDEA, Nonlinear Differ. Equ. Appl., Volume 20 (2013) no. 3, pp. 523-537 | MR | Zbl | DOI

[53] De Filippis, Cristiana; Goatin, Paola The initial–boundary value problem for general non-local scalar conservation laws in one space dimension, Nonlinear Anal., Theory Methods Appl., Volume 161 (2017), pp. 131-156 | DOI | Zbl | MR

[54] Di Francesco, Marco; Fagioli, Simone; Radici, Emanuela Deterministic particle approximation for nonlocal transport equations with nonlinear mobility, J. Differ. Equations, Volume 266 (2019) no. 5, pp. 2830-2868 | DOI | MR | Zbl

[55] DiPerna, Ronald J.; Lions, Pierre-Louis Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547 | DOI | MR

[56] Filippov, Alexey F. Differential equations with discontinuous right-hand side, Mat. Sb., Volume 93 (1960) no. 1, pp. 99-128 | MR | Zbl

[57] Filippov, Alexey F. Differential Equations with Discontinuous Righthand Sides, Springer, 1988 | DOI

[58] Fjordholm, Ulrik S. Sharp uniqueness conditions for one-dimensional, autonomous ordinary differential equations, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 9, pp. 916-921 | MR | Numdam | Zbl | DOI

[59] Folland, Gerald B. Real analysis. Modern techniques and their applications, Pure and Applied Mathematics, John Wiley & Sons, 1999, xvi+386 pages

[60] Friedrich, Jan; Kolb, Oliver Maximum principle satisfying CWENO schemes for nonlocal conservation laws, SIAM J. Sci. Comput., Volume 41 (2019) no. 2, p. A973-A988 | DOI | MR | Zbl

[61] Garavello, Mauro; Nataline, Roberto; Piccoli, Benedetto; Terracina, Andrea Conservation laws with discontinuous flux, Netw. Heterog. Media, Volume 2 (2007) no. 1, p. 159 | DOI | MR | Zbl

[62] Gimse, Tore Conservation laws with discontinuous flux functions, SIAM J. Math. Anal., Volume 24 (1993) no. 2, pp. 279-289 | DOI | MR | Zbl

[63] Goatin, Paola; Rossi, Elena Well-posedness of IBVP for 1D scalar non-local conservation laws, Z. Angew. Math. Mech., Volume 99 (2019) no. 11, e201800318 | MR

[64] Goatin, Paola; Scialanga, Sheila Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media, Volume 11 (2016) no. 1, pp. 107-121 | DOI | MR | Zbl

[65] Gong, Xiaoqian; Kawski, Matthias Weak Measure-Valued Solutions of a Nonlinear Hyperbolic Conservation Law, SIAM J. Math. Anal., Volume 53 (2021) no. 4, pp. 4417-4444 | DOI | MR | Zbl

[66] Greenshields, B. D.; Bibbins, J. R.; Channing, W. S.; Miller, H. H. A study of traffic capacity, Highway research board proceedings, Volume 1935, National Research Council (USA), Highway Research Board (1935)

[67] Gröschel, Michael; Keimer, Alexander; Leugering, Günter; Wang, Zhiqiang Regularity theory and adjoint-based optimality conditions for a nonlinear transport equation with nonlocal velocity, SIAM J. Control Optim., Volume 52 (2014) no. 4, pp. 2141-2163 | DOI | MR | Zbl

[68] Gugat, Martin; Keimer, Alexander; Leugering, Günter; Wang, Zhiqiang Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks, Netw. Heterog. Media, Volume 10 (2015) no. 4, pp. 749-785 | DOI | MR | Zbl

[69] Hu, Shouchuan Differential equations with discontinuous right-hand sides, J. Math. Anal. Appl., Volume 154 (1991) no. 2, pp. 377-390 | MR | Zbl

[70] Karafyllis, Iasson; Theodosis, Dionysios; Papageorgiou, Markos Analysis and control of a non-local PDE traffic flow model, Int. J. Control, Volume 95 (2022) no. 3, pp. 660-678 | DOI | MR | Zbl

[71] Karlsen, Kenneth H.; Klingenberg, Christian; Risebro, Nils H. A relaxation scheme for conservation laws with a discontinuous coefficient, Math. Comput., Volume 73 (2004) no. 247, pp. 1235-1259 | DOI | MR | Zbl

[72] Karlsen, Kenneth H.; Towers, John D. Convergence of the Lax–Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux, Chin. Ann. Math., Ser. B, Volume 25 (2004) no. 03, pp. 287-318 | DOI | Zbl

[73] Keimer, Alexander; Leugering, Günter; Sarkar, Tanmay Analysis of a system of nonlocal balance laws with weighted work in progress, J. Hyperbolic Differ. Equ., Volume 15 (2018) no. 3, pp. 375-406 | MR | Zbl | DOI

[74] Keimer, Alexander; Pflug, Lukas Existence, uniqueness and regularity results on nonlocal balance laws, J. Differ. Equations, Volume 263 (2017), pp. 4023-4069 | DOI | MR | Zbl

[75] Keimer, Alexander; Pflug, Lukas On approximation of local conservation laws by nonlocal conservation laws, J. Math. Anal. Appl., Volume 475 (2019) no. 2, pp. 1927-1955 | DOI | MR | Zbl

[76] Keimer, Alexander; Pflug, Lukas; Spinola, Michele Existence, uniqueness and regularity of multi-dimensional nonlocal balance laws with damping, J. Math. Anal. Appl., Volume 466 (2018) no. 1, pp. 18-55 | DOI | MR | Zbl

[77] Keimer, Alexander; Pflug, Lukas; Spinola, Michele Nonlocal balance laws: Theory of convergence for nondissipative numerical schemes (2018) (submitted)

[78] Keimer, Alexander; Pflug, Lukas; Spinola, Michele Nonlocal scalar conservation laws on bounded domains and applications in traffic flow, SIAM J. Math. Anal., Volume 50 (2018) no. 6, pp. 6271-6306 | DOI | MR | Zbl

[79] Keimer, Alexander; Pflug, Lukas; Spinola, Michele Nonlocal scalar conservation laws on bounded domains and applications in traffic flow, SIAM J. Math. Anal., Volume 50 (2018) no. 6, pp. 6271-6306 | DOI | MR | Zbl

[80] Keimer, Alexander; Singh, Manish; Veeravalli, Tanya Existence and uniqueness results for a class of nonlocal conservation laws by means of a Lax–Hopf-type solution formula, J. Hyperbolic Differ. Equ., Volume 17 (2020) no. 4, pp. 677-705 | DOI | MR | Zbl

[81] Klausen, Runhild Aae; Risebro, Nils H. Stability of conservation laws with discontinuous coefficients, J. Differ. Equations, Volume 157 (1999) no. 1, pp. 41-60 | DOI | MR | Zbl

[82] Klingenberg, Christian; Risebro, Nils H. Convex conservation laws with discontinuous coefficients. existence, uniqueness and asymptotic behavior, Commun. Partial Differ. Equations, Volume 20 (1995) no. 11-12, pp. 1959-1990 | MR | Zbl | DOI

[83] Kloeden, Peter E.; Lorenz, Thomas Nonlocal multi-scale traffic flow models: analysis beyond vector spaces, Bull. Math. Sci., Volume 6 (2016) no. 3, pp. 453-514 | DOI | MR | Zbl

[84] Kutta, Wilhelm Beitrag zur näherungsweisen Integration totaler Differentialgleichungen, Zeitschr. f. Math., Volume 46 (1901), pp. 435-453 | Zbl

[85] Lee, Yongki Thresholds for shock formation in traffic flow models with nonlocal-concave-convex flux, J. Differ. Equations, Volume 266 (2019) no. 1, pp. 580-599 | MR | Zbl

[86] Leoni, Giovanni A first course in Sobolev spaces, Graduate Studies in Mathematics, 105, American Mathematical Society, 2009, xvi+607 pages

[87] Li, Dong; Li, Tong Shock formation in a traffic flow model with Arrhenius look-ahead dynamics, Netw. Heterog. Media, Volume 6 (2011) no. 4, pp. 681-694 | MR | Zbl

[88] Lighthill, Michael J.; Whitham, Gerald B. On kinematic waves. I. Flood movement in long rivers, Proc. R. Soc. Lond., Ser. A, Volume 229 (1955) no. 1178, pp. 281-316 | MR | Zbl

[89] Lighthill, Michael J.; Whitham, Gerald B. On kinematic waves II. A theory of traffic flow on long crowded roads, Proc. R. Soc. Lond., Ser. A, Volume 229 (1955) no. 1178, pp. 317-345 | MR | Zbl

[90] Ngoduy, Dong; Wilson, R. E. Multianticipative nonlocal macroscopic traffic model, Comput.-Aided Civil Infrastruct. Eng., Volume 29 (2014) no. 4, pp. 248-263 | DOI

[91] Osgood, William F. Beweis der Existenz einer Lösung der Differentialgleichung dy dx=f(x,y) ohne Hinzunahme der Cauchy-Lipschitz’schen Bedingung, Monatsh. f. Math., Volume 9 (1898) no. 1, pp. 331-345 | DOI | Zbl

[92] Ostrov, Daniel N. Solutions of Hamilton–Jacobi equations and scalar conservation laws with discontinuous space–time dependence, J. Differ. Equations, Volume 182 (2002) no. 1, pp. 51-77 | DOI | MR | Zbl

[93] Petrova, Guergana; Popov, Bojan Linear transport equations with discontinuous coefficients, Commun. Partial Differ. Equations, Volume 24 (1999) no. 9-10, pp. 1849-1873 | DOI | MR | Zbl

[94] Piccoli, Benedetto; Rossi, Francesco Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, Acta Appl. Math., Volume 124 (2013) no. 1, pp. 73-105 | DOI | MR | Zbl

[95] Richards, Paul I. Shock waves on the highway, Oper. Res., Volume 4 (1956) no. 1, pp. 42-51 | DOI | MR | Zbl

[96] Ridder, Johanna; Shen, Wen Traveling waves for nonlocal models of traffic flow, Discrete Contin. Dyn. Syst., Ser. A, Volume 39 (2019), pp. 4001-4040 | DOI | MR | Zbl

[97] Runge, Carl Über die numerische Auflösung totaler Differentialgleichungen, Math. Ann., Volume 46 (1895) no. 2, pp. 167-178 | DOI | MR

[98] Shang, Peipei; Wang, Zhiqiang Analysis and control of a scalar conservation law modeling a highly re-entrant manufacturing system, J. Differ. Equations, Volume 250 (2011) no. 2, pp. 949-982 | DOI | MR | Zbl

[99] Towers, John D. Convergence of a difference scheme for conservation laws with a discontinuous flux, SIAM J. Numer. Anal., Volume 38 (2000) no. 2, pp. 681-698 | DOI | MR | Zbl

[100] Towers, John D. A difference scheme for conservation laws with a discontinuous flux: the nonconvex case, SIAM J. Numer. Anal., Volume 39 (2001) no. 4, pp. 1197-1218 | DOI | MR | Zbl

[101] Walter, Wolfgang Differential and Integral Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, 55, Springer, 1970 | DOI

[102] Zeidler, Eberhard Applied functional analysis. Applications to mathematical physics, Applied Mathematical Sciences, 108, Springer, 1995

[103] Zumbrun, Kevin On a nonlocal dispersive equation modeling particle suspensions, Q. Appl. Math., Volume 57 (1999) no. 3, pp. 573-600 | DOI | MR | Zbl

Cité par Sources :