Let be the -Gaussian von Neumann algebra associated with a separable infinite dimensional real Hilbert space where . We show that for . The C-algebraic counterpart of this result was obtained recently in [1]. Using ideas of Ozawa we show that this non-isomorphism result also holds on the level of von Neumann algebras.
Révisé le :
Accepté le :
Publié le :
Keywords: $q$-Gaussian von Neumann algebras, Akemann–Ostrand property
Caspers, Martijn 1
CC-BY 4.0
@article{CRMATH_2023__361_G11_1711_0,
author = {Caspers, Martijn},
title = {On the isomorphism class of $q${-Gaussian} {W}$^\ast $-algebras for infinite variables},
journal = {Comptes Rendus. Math\'ematique},
pages = {1711--1716},
year = {2023},
publisher = {Acad\'emie des sciences, Paris},
volume = {361},
number = {G11},
doi = {10.5802/crmath.489},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.489/}
}
TY - JOUR AU - Caspers, Martijn TI - On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables JO - Comptes Rendus. Mathématique PY - 2023 SP - 1711 EP - 1716 VL - 361 IS - G11 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.489/ DO - 10.5802/crmath.489 LA - en ID - CRMATH_2023__361_G11_1711_0 ER -
%0 Journal Article %A Caspers, Martijn %T On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables %J Comptes Rendus. Mathématique %D 2023 %P 1711-1716 %V 361 %N G11 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.489/ %R 10.5802/crmath.489 %G en %F CRMATH_2023__361_G11_1711_0
Caspers, Martijn. On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables. Comptes Rendus. Mathématique, Tome 361 (2023) no. G11, pp. 1711-1716. doi: 10.5802/crmath.489
[1] On the isomorphism class of -Gaussian C-algebras for infinite variables (2022) (to appear in Proc. Am. Math. Soc.) | arXiv
[2] -Gaussian processes: non-commutative and classical aspects, Commun. Math. Phys., Volume 185 (1997) no. 1, pp. 129-154 | MR | Zbl
[3] An example of a generalized Brownian motion, Commun. Math. Phys., Volume 137 (1991) no. 3, pp. 519-531 | Zbl | DOI | MR
[4] C-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, 88, American Mathematical Society, 2008, xvi+509 pages
[5] A free stochastic partial differential equation, Ann. Inst. Henri Poincaré, Volume 50 (2014) no. 4, pp. 1404-1455 | MR | Numdam | Zbl
[6] Properly Proximal von Neumann Algebras (2022) | arXiv
[7] Free Random Variables, CRM Monograph Series, 1, American Mathematical Society, 1992, v+70 pages
[8] Free monotone transport, Invent. Math., Volume 197 (2014) no. 3, pp. 613-661 | DOI | MR
[9] Hilbert C-modules, A toolkit for operator algebraists, London Mathematical Society Lecture Note Series, 20, London Mathematical Society, 1995, x+130 pages | DOI
[10] Free monotone transport for infinite variables, Int. Math. Res. Not., Volume 2018 (2018) no. 17, pp. 5486-5535 | DOI | MR | Zbl
[11] Non injectivity of the -deformed von Neumann algebra, Math. Ann., Volume 330 (2004) no. 1, pp. 17-38 | MR | Zbl
[12] A comment on free group factors, Noncommutative harmonic analysis with applications to probability. II (Banach Center Publications), Volume 89, Polish Academy of Sciences, 2010, pp. 241-245 | DOI | MR | Zbl
[13] Theory of operator algebras. I, Springer, 1979, vii+415 pages | DOI
Cité par Sources :





