Théorie des représentations
On the symmetry of the finitistic dimension
Comptes Rendus. Mathématique, Tome 361 (2023) no. G9, pp. 1449-1453

For any ring we propose the construction of a cover which increases the finitistic dimension on one side and decreases the finitistic dimension to zero on the opposite side. This complements recent work of Cummings.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.481
Classification : 16E10

Krause, Henning 1

1 Fakultät für Mathematik Universität Bielefeld D-33501 Bielefeld Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G9_1449_0,
     author = {Krause, Henning},
     title = {On the symmetry of the finitistic dimension},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1449--1453},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G9},
     doi = {10.5802/crmath.481},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.481/}
}
TY  - JOUR
AU  - Krause, Henning
TI  - On the symmetry of the finitistic dimension
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1449
EP  - 1453
VL  - 361
IS  - G9
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.481/
DO  - 10.5802/crmath.481
LA  - en
ID  - CRMATH_2023__361_G9_1449_0
ER  - 
%0 Journal Article
%A Krause, Henning
%T On the symmetry of the finitistic dimension
%J Comptes Rendus. Mathématique
%D 2023
%P 1449-1453
%V 361
%N G9
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.481/
%R 10.5802/crmath.481
%G en
%F CRMATH_2023__361_G9_1449_0
Krause, Henning. On the symmetry of the finitistic dimension. Comptes Rendus. Mathématique, Tome 361 (2023) no. G9, pp. 1449-1453. doi: 10.5802/crmath.481

[1] Auslander, Maurice; Buchsbaum, David A. Homological dimension in noetherian rings. II, Trans. Am. Math. Soc., Volume 88 (1958), pp. 194-206 | Zbl | MR

[2] Bass, Hyman Finitistic dimension and a homological generalization of semi-primary rings, Trans. Am. Math. Soc., Volume 95 (1960), pp. 466-488 | Zbl | DOI | MR

[3] Cummings, Charley Left-right symmetry of finite finitistic dimension (2022) | arXiv

[4] Kirkman, Ellen; Kuzmanovich, James Algebras with large homological dimensions, Proc. Amer. Math. Soc., Volume 109 (1990) no. 4, pp. 903-906 | Zbl | DOI | MR

[5] Krause, Henning Homological theory of representations, Cambridge Studies in Advanced Mathematics, 195, Cambridge University Press, 2022 | Zbl

Cité par Sources :