For any ring we propose the construction of a cover which increases the finitistic dimension on one side and decreases the finitistic dimension to zero on the opposite side. This complements recent work of Cummings.
Révisé le :
Accepté le :
Publié le :
Krause, Henning 1
CC-BY 4.0
@article{CRMATH_2023__361_G9_1449_0,
author = {Krause, Henning},
title = {On the symmetry of the finitistic dimension},
journal = {Comptes Rendus. Math\'ematique},
pages = {1449--1453},
year = {2023},
publisher = {Acad\'emie des sciences, Paris},
volume = {361},
number = {G9},
doi = {10.5802/crmath.481},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.481/}
}
TY - JOUR AU - Krause, Henning TI - On the symmetry of the finitistic dimension JO - Comptes Rendus. Mathématique PY - 2023 SP - 1449 EP - 1453 VL - 361 IS - G9 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.481/ DO - 10.5802/crmath.481 LA - en ID - CRMATH_2023__361_G9_1449_0 ER -
Krause, Henning. On the symmetry of the finitistic dimension. Comptes Rendus. Mathématique, Tome 361 (2023) no. G9, pp. 1449-1453. doi: 10.5802/crmath.481
[1] Homological dimension in noetherian rings. II, Trans. Am. Math. Soc., Volume 88 (1958), pp. 194-206 | Zbl | MR
[2] Finitistic dimension and a homological generalization of semi-primary rings, Trans. Am. Math. Soc., Volume 95 (1960), pp. 466-488 | Zbl | DOI | MR
[3] Left-right symmetry of finite finitistic dimension (2022) | arXiv
[4] Algebras with large homological dimensions, Proc. Amer. Math. Soc., Volume 109 (1990) no. 4, pp. 903-906 | Zbl | DOI | MR
[5] Homological theory of representations, Cambridge Studies in Advanced Mathematics, 195, Cambridge University Press, 2022 | Zbl
Cité par Sources :





