Géométrie algébrique
Bigness of the tangent bundles of projective bundles over curves
Comptes Rendus. Mathématique, Tome 361 (2023) no. G7, pp. 1115-1122

In this short article, we determine the bigness of the tangent bundle T X of the projective bundle X= C (E) associated to a vector bundle E on a smooth projective curve C.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.476

Kim, Jeong-Seop 1

1 School of Mathematics, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-gu, Seoul 02455, Republic of Korea
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G7_1115_0,
     author = {Kim, Jeong-Seop},
     title = {Bigness of the tangent bundles of projective bundles over curves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1115--1122},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G7},
     doi = {10.5802/crmath.476},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.476/}
}
TY  - JOUR
AU  - Kim, Jeong-Seop
TI  - Bigness of the tangent bundles of projective bundles over curves
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1115
EP  - 1122
VL  - 361
IS  - G7
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.476/
DO  - 10.5802/crmath.476
LA  - en
ID  - CRMATH_2023__361_G7_1115_0
ER  - 
%0 Journal Article
%A Kim, Jeong-Seop
%T Bigness of the tangent bundles of projective bundles over curves
%J Comptes Rendus. Mathématique
%D 2023
%P 1115-1122
%V 361
%N G7
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.476/
%R 10.5802/crmath.476
%G en
%F CRMATH_2023__361_G7_1115_0
Kim, Jeong-Seop. Bigness of the tangent bundles of projective bundles over curves. Comptes Rendus. Mathématique, Tome 361 (2023) no. G7, pp. 1115-1122. doi: 10.5802/crmath.476

[1] Atiyah, Michael F. Vector bundles over an elliptic curve, Proc. Lond. Math. Soc., Volume 7 (1957), pp. 414-452 | Zbl | DOI | MR

[2] Bauer, Thomas; Kovács, Sándor J.; Küronya, Alex; Mistretta, Ernesto C.; Szemberg, Tomasz; Urbinati, Stefano On positivity and base loci of vector bundles, Eur. J. Math., Volume 1 (2015) no. 2, pp. 229-249 | DOI | MR | Zbl

[3] Campana, Frédéric; Peternell, Thomas Projective manifolds whose tangent bundles are numerically effective, Math. Ann., Volume 289 (1991) no. 1, pp. 169-187 | DOI | MR | Zbl

[4] Campana, Frédéric; Peternell, Thomas 4-folds with numerically effective tangent bundles and second Betti numbers greater than one, Manuscr. Math., Volume 79 (1993) no. 3-4, pp. 225-238 | DOI | MR | Zbl

[5] Höring, Andreas; Liu, Jie Fano manifolds with big tangent bundle: a characterisation of V 5 , Collect. Math., Volume 74 (2023) no. 3, pp. 639-686 | DOI | MR | Zbl

[6] Höring, Andreas; Liu, Jie; Shao, Feng Examples of Fano manifolds with non-pseudoeffective tangent bundle, J. Lond. Math. Soc., Volume 106 (2022) no. 1, pp. 27-59 | DOI | MR | Zbl

[7] Huybrechts, Daniel; Lehn, Manfred The geometry of moduli spaces of sheaves, Cambridge University Press, 2010 | DOI

[8] Hwang, Jun-Muk Rigidity of rational homogeneous spaces, Proceedings of the international congress of mathematicians (ICM). Volume II: Invited lectures, European Mathematical Society, 2006, pp. 613-626 | Zbl

[9] Hwang, Jun-Muk; Ramanan, Sundararaman Hecke curves and Hitchin discriminant, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 5, pp. 801-817 | DOI | MR | Numdam | Zbl

[10] Kanemitsu, Akihiro Fano 5-folds with nef tangent bundles, Math. Res. Lett., Volume 24 (2017) no. 5, pp. 1453-1475 | DOI | MR | Zbl

[11] Kim, Hosung; Kim, Jeong-Seop; Lee, Yongnam Bigness of the tangent bundle of a Fano threefold with Picard number two (2022) | arXiv

[12] Kollár, János; Mori, Shigefumi Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 (with the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI

[13] Lazarsfeld, Robert Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48, Springer, 2004

[14] Lazarsfeld, Robert Positivity in algebraic geometry. II. Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 49, Springer, 2004 | DOI

[15] Miyaoka, Yoichi The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985 (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 449-476 | MR | Zbl | DOI

[16] Mok, Ngaiming On Fano manifolds with nef tangent bundles admitting 1-dimensional varieties of minimal rational tangents, Trans. Am. Math. Soc., Volume 354 (2002) no. 7, pp. 2639-2658 | Zbl | MR

[17] Mori, Shigefumi Projective manifolds with ample tangent bundles, Ann. Math., Volume 110 (1979) no. 3, pp. 593-606 | DOI | Zbl | MR

[18] Mukai, Shigeru; Sakai, Fumio Maximal subbundles of vector bundles on a curve, Manuscr. Math., Volume 52 (1985) no. 1-3, pp. 251-256 | DOI | MR | Zbl

[19] Muñoz, Roberto; Occhetta, Gianluca; Solá Conde, Luis E.; Watanabe, Kiwamu; Wiśniewski, Jarosław A. A survey on the Campana-Peternell conjecture, Rend. Ist. Mat. Univ. Trieste, Volume 47 (2015), pp. 127-185 | Zbl | MR

[20] Narasimhan, Mudumbai S.; Ramanan, Sundararaman Moduli of vector bundles on a compact Riemann surface, Ann. Math., Volume 89 (1969), pp. 14-51 | DOI | MR | Zbl

[21] Occhetta, Gianluca; Solá Conde, Luis E.; Watanabe, Kiwamu Uniform families of minimal rational curves on Fano manifolds, Rev. Mat. Complut., Volume 29 (2016) no. 2, pp. 423-437 | DOI | MR | Zbl

[22] Rosoff, Jeff Effective divisor classes on a ruled surface, Pac. J. Math., Volume 202 (2002) no. 1, pp. 119-124 | MR | Zbl | DOI

[23] Szurek, Michał; Wiśniewski, Jarosław A. Fano bundles of rank 2 on surfaces, Compos. Math., Volume 76 (1990) no. 1-2, pp. 295-305 | MR | Numdam | Zbl

[24] Watanabe, Kiwamu Fano 5-folds with nef tangent bundles and Picard numbers greater than one, Math. Z., Volume 276 (2014) no. 1-2, pp. 39-49 | DOI | MR | Zbl

Cité par Sources :