Combinatoire, Théorie des représentations
Necessary conditions for the positivity of Littlewood–Richardson and plethystic coefficients
[Conditions nécessaires de positivité pour les coefficients de Littlewood–Richardson et du pléthysme]
Comptes Rendus. Mathématique, Tome 361 (2023) no. G7, pp. 1163-1173

We give necessary conditions for the positivity of Littlewood–Richardson coefficients and SXP coefficients. We deduce necessary conditions for the positivity of the plethystic coefficients. Explicitly, our main result states that if S λ (V) appears as a summand in the decomposition into irreducibles of S μ (S ν (V)), then ν’s diagram is contained in λ’s diagram.

Nous donnons des conditions nécessaires de positivité pour les coefficients de Littlewood–Richardson et pour les coefficients SXP. Nous en déduisons la condition nécessaire de positivité suivante pour les coefficients du pléthysme : si S λ (V) apparaît dans la décomposition en irréductibles de S μ (S ν (V)), alors le diagramme de ν est contenu dans celui de λ.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.468
Classification : 05E05, 05E18, 05A17

Gutiérrez, Álvaro 1 ; Rosas, Mercedes H. 1

1 Universidad de Sevilla, Spain
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G7_1163_0,
     author = {Guti\'errez, \'Alvaro and Rosas, Mercedes H.},
     title = {Necessary conditions for the positivity of {Littlewood{\textendash}Richardson} and plethystic coefficients},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1163--1173},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G7},
     doi = {10.5802/crmath.468},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.468/}
}
TY  - JOUR
AU  - Gutiérrez, Álvaro
AU  - Rosas, Mercedes H.
TI  - Necessary conditions for the positivity of Littlewood–Richardson and plethystic coefficients
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1163
EP  - 1173
VL  - 361
IS  - G7
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.468/
DO  - 10.5802/crmath.468
LA  - en
ID  - CRMATH_2023__361_G7_1163_0
ER  - 
%0 Journal Article
%A Gutiérrez, Álvaro
%A Rosas, Mercedes H.
%T Necessary conditions for the positivity of Littlewood–Richardson and plethystic coefficients
%J Comptes Rendus. Mathématique
%D 2023
%P 1163-1173
%V 361
%N G7
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.468/
%R 10.5802/crmath.468
%G en
%F CRMATH_2023__361_G7_1163_0
Gutiérrez, Álvaro; Rosas, Mercedes H. Necessary conditions for the positivity of Littlewood–Richardson and plethystic coefficients. Comptes Rendus. Mathématique, Tome 361 (2023) no. G7, pp. 1163-1173. doi: 10.5802/crmath.468

[1] Briand, Emmanuel; Orellana, Rosa; Rosas, Mercedes Reduced Kronecker coefficients and counter-examples to Mulmuley’s strong saturation conjecture SH, Comput. Complexity, Volume 18 (2009) no. 4, pp. 577-600 (with an appendix by Ketan Mulmuley) | DOI | MR | Zbl

[2] Briand, Emmanuel; Orellana, Rosa; Rosas, Mercedes The stability of the Kronecker product of Schur functions, J. Algebra, Volume 331 (2011), pp. 11-27 | DOI | MR | Zbl

[3] Bürgisser, Peter; Ikenmeyer, Christian Deciding positivity of Littlewood–Richardson coefficients, SIAM J. Discrete Math., Volume 27 (2013) no. 4, pp. 1639-1681 | DOI | MR | Zbl

[4] Chen, Y. M.; Garsia, Adriano M.; Remmel, Jeffrey B. Algorithms for plethysm, Combinatorics and algebra (Boulder, Colo., 1983) (Contemporary Mathematics), Volume 34, American Mathematical Society, 1984, pp. 109-153 | DOI | MR | Zbl

[5] Colmenarejo, Laura; Orellana, Rosa; Saliola, Franco; Schilling, Anne; Zabrocki, Mike The mystery of plethysm coefficients (2022) | arXiv

[6] Dvir, Yoav On the Kronecker product of S n characters, J. Algebra, Volume 154 (1993) no. 1, pp. 125-140 | DOI | MR | Zbl

[7] Fischer, Nick; Ikenmeyer, Christian The computational complexity of plethysm coefficients, Comput. Complexity, Volume 29 (2020) no. 2, 8, 43 pages | DOI | MR | Zbl

[8] Fulton, William Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, 1997, x+260 pages | MR

[9] Fulton, William; Harris, Joe Representation theory. A first course, Readings in Mathematics, Graduate Texts in Mathematics, 129, Springer, 1991, xvi+551 pages | DOI | MR | Zbl

[10] Ikenmeyer, Christian; Mulmuley, Ketan D.; Walter, Michael On vanishing of Kronecker coefficients, Comput. Complexity, Volume 26 (2017) no. 4, pp. 949-992 | DOI | MR | Zbl

[11] Langley, T. M.; Remmel, Jeffrey B. The plethysm s λ [s μ ] at hook and near-hook shapes, Electron. J. Comb., Volume 11 (2004) no. 1, 11, 26 pages | MR | Zbl

[12] Littlewood, Dudley E. Modular representations of symmetric groups, Proc. R. Soc. Lond., Ser. A, Volume 209 (1951), pp. 333-353 | DOI | MR | Zbl

[13] Macdonald, Ian G. Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, Clarendon Press, 2015, xii+475 pages (with contribution by A. V. Zelevinsky and a foreword by Richard Stanley, Reprint of the 2008 paperback edition) | MR

[14] Mishna, Marni; Rosas, Mercedes; Sundaram, Sheila Vector partition functions and Kronecker coefficients, J. Phys. A. Math. Gen., Volume 54 (2021) no. 20, 205204, 29 pages | DOI | MR | Zbl

[15] Mulmuley, Ketan D.; Sohoni, Milind Geometric complexity theory. I. An approach to the P vs. NP and related problems, SIAM J. Comput., Volume 31 (2001) no. 2, pp. 496-526 | DOI | MR | Zbl

[16] Pak, Igor; Panova, Greta On the complexity of computing Kronecker coefficients, Comput. Complexity, Volume 26 (2017) no. 1, pp. 1-36 | DOI | MR | Zbl

[17] Pak, Igor; Panova, Greta Breaking down the reduced Kronecker coefficients, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 4, pp. 463-468 | DOI | MR | Numdam | Zbl

[18] Remmel, Jeffrey B. The combinatorics of (k,l)-hook Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) (Contemporary Mathematics), Volume 34, American Mathematical Society, 1984, pp. 253-287 | DOI | MR | Zbl

[19] Rosas, Mercedes The Kronecker product of Schur functions indexed by two-row shapes or hook shapes, J. Algebr. Comb., Volume 14 (2001) no. 2, pp. 153-173 | DOI | MR | Zbl

[20] Stanley, Richard P. Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, 1999, xii+581 pages (with a foreword by Gian-Carlo Rota and Appendix 1 by Sergey Fomin) | DOI | MR

[21] Wildon, Mark A generalized SXP rule proved by bijections and involutions, Ann. Comb., Volume 22 (2018) no. 4, pp. 885-905 | DOI | MR | Zbl

[22] Yang, Mei The first term in the expansion of plethysm of Schur functions, Discrete Math., Volume 246 (2002) no. 1-3, pp. 331-341 | DOI | MR | Zbl

Cité par Sources :