Algèbre, Théorie des nombres
Criterion for surjectivity of localization in Galois cohomology of a reductive group over a number field
Comptes Rendus. Mathématique, Tome 361 (2023) no. G9, pp. 1401-1414

Let G be a connected reductive group over a number field F, and let S be a set (finite or infinite) of places of F. We give a necessary and sufficient condition for the surjectivity of the localization map from H 1 (F,G) to the “direct sum” of the sets H 1 (F v ,G) where v runs over S. In the appendices, we give a new construction of the abelian Galois cohomology of a reductive group over a field of arbitrary characteristic.

Soit G un groupe réductif connexe sur un corps de nombres F, et soit S un ensemble (fini ou infini) de places de F. On donne une condition nécessaire et suffisante pour la surjectivité de l’application de localisation de H 1 (F,G) vers la « somme directe » des ensembles H 1 (F v ,G), où v parcourt S. Dans les appendices on donne une nouvelle construction de la cohomologie galoisienne abélienne d’un groupe réductif sur un corps de caractéristique quelconque.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.455
Classification : 11E72, 20G10, 20G20, 20G25, 20G30

Borovoi, Mikhail 1

1 Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G9_1401_0,
     author = {Borovoi, Mikhail},
     title = {Criterion for surjectivity of localization in {Galois} cohomology of a reductive group over a number field},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1401--1414},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G9},
     doi = {10.5802/crmath.455},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.455/}
}
TY  - JOUR
AU  - Borovoi, Mikhail
TI  - Criterion for surjectivity of localization in Galois cohomology of a reductive group over a number field
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1401
EP  - 1414
VL  - 361
IS  - G9
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.455/
DO  - 10.5802/crmath.455
LA  - en
ID  - CRMATH_2023__361_G9_1401_0
ER  - 
%0 Journal Article
%A Borovoi, Mikhail
%T Criterion for surjectivity of localization in Galois cohomology of a reductive group over a number field
%J Comptes Rendus. Mathématique
%D 2023
%P 1401-1414
%V 361
%N G9
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.455/
%R 10.5802/crmath.455
%G en
%F CRMATH_2023__361_G9_1401_0
Borovoi, Mikhail. Criterion for surjectivity of localization in Galois cohomology of a reductive group over a number field. Comptes Rendus. Mathématique, Tome 361 (2023) no. G9, pp. 1401-1414. doi: 10.5802/crmath.455

[1] Atiyah, Michael F.; Wall, Charles T. C. Cohomology of groups, Global class field theory (Proc. Instructional Conf., Brighton, 1965), Thompson, 196, pp. 94-115 | Zbl

[2] Borel, Armand; Harder, Gunter Existence of discrete cocompact subgroups of reductive groups over local fields, J. Reine Angew. Math., Volume 298 (1978), pp. 53-64 | MR | Zbl

[3] Borel, Armand; Tits, Jacques Compléments à l’article: “Groupes réductifs”, Publ. Math., Inst. Hautes Étud. Sci., Volume 41 (1972), pp. 253-276 | DOI | Numdam | Zbl

[4] Borovoi, Mikhail Is Deligne’s braiding functorial? https://mathoverflow.net/q/436002 (version: 2022-12-06)

[5] Borovoi, Mikhail Abelian Galois cohomology of reductive groups, Memoirs of the American Mathematical Society, 626, American Mathematical Society, 1998

[6] Borovoi, Mikhail; Timashev, Dmitry A. Galois cohomology and component group of a real reductive group (2021) (https://arxiv.org/abs/2110.13062, to appear in Isr. J. Math.)

[7] Breen, L. Letter to Borovoi of May 27, 1991

[8] Colliot-Thélène, Jean-Louis Résolutions flasques des groupes linéaires connexes, J. Reine Angew. Math., Volume 618 (2008), pp. 77-133 | Zbl

[9] Conduché, Daniel Modules croisés généralisés de longueur 2, J. Pure Appl. Algebra, Volume 34 (1984) no. 2-3, pp. 155-178 | DOI | MR | Zbl

[10] Conrad, Brian; Gabber, Ofer; Prasad, Gopal Pseudo-reductive groups, New Mathematical Monographs, Cambridge University Press, 2015 | DOI

[11] Deligne, Pierre Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) (Proceedings of Symposia in Pure Mathematics), Volume 33, American Mathematical Society, 1979, pp. 247-289 | Zbl

[12] González-Avilés, Cristian D. Abelian class groups of reductive group schemes, Isr. J. Math., Volume 196 (2013) no. 1, pp. 175-214 | DOI | MR | Zbl

[13] Kottwitz, Robert E. Stable trace formula: elliptic singular terms, Math. Ann., Volume 275 (1986) no. 3, pp. 365-399 | DOI | MR | Zbl

[14] Labesse, Jean-Pierre Cohomologie, stabilisation et changement de base, Astérisque, 257, Société Mathématique de France, 1999 (Appendix A by L. Clozel and Labesse, and Appendix B by Breen, L.) | MR | Numdam

[15] Labesse, Jean-Pierre; Lemaire, B. On abelianized cohomology for reductive groups. Appendix B to the paper by E. Lapid and Z. Mao “A conjecture on Whittaker-Fourier coefficients of cusp forms”, J. Number Theory, Volume 146 (2015), pp. 448-505

[16] Merkurjev, Aleksandr S. K-theory and algebraic groups, European Congress of Mathematics, Vol. II (Budapest, 1996) (Progress in Mathematics), Volume 1996, Birkhäuser, 1998, pp. 43-72 | DOI | Zbl

[17] Noohi, Behrang Group cohomology with coefficients in a crossed module, J. Inst. Math. Jussieu, Volume 10 (2011) no. 2, pp. 359-404 | DOI | MR | Zbl

[18] Petrov (Sasha P), A. Is this exact sequence known? https://mathoverflow.net/q/429772 (version: 2022-09-04)

[19] Prasad, Gopal; Rapinchuk, Andrei S. On the existence of isotropic forms of semi-simple algebraic groups over number fields with prescribed local behavior, Adv. Math., Volume 207 (2006) no. 2, pp. 646-660 | DOI | MR | Zbl

[20] Serre, Jean-Pierre Galois cohomology, Springer, 1997 | DOI | Numdam

[21] Weibel, Charles A. An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, 1994 | DOI | Numdam

Cité par Sources :