Équations aux dérivées partielles, Mécanique
Remarks on homogenization and 3D-2D dimension reduction of unbounded energies on thin films
Comptes Rendus. Mathématique, Tome 361 (2023) no. G5, pp. 903-910

We study periodic homogenization and 3D-2D dimension reduction by Γ(π)-con-vergence of heterogeneous thin films whose the stored-energy densities have no polynomial growth. In particular, our results are consistent with one of the basic facts of nonlinear elasticity, namely the necessity of an infinite amount of energy to compress a finite volume of matter into zero volume. However, our results are not consistent with the noninterpenetration of the matter.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.454

Anza Hafsa, Omar 1 ; Mandallena, Jean-Philippe 1

1 Université de Nimes, Laboratoire MIPA, Site des Carmes, Place Gabriel Péri, 30021 Nîmes, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G5_903_0,
     author = {Anza Hafsa, Omar and Mandallena, Jean-Philippe},
     title = {Remarks on homogenization and $3D$-$2D$ dimension reduction of unbounded energies on thin films},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {903--910},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G5},
     doi = {10.5802/crmath.454},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.454/}
}
TY  - JOUR
AU  - Anza Hafsa, Omar
AU  - Mandallena, Jean-Philippe
TI  - Remarks on homogenization and $3D$-$2D$ dimension reduction of unbounded energies on thin films
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 903
EP  - 910
VL  - 361
IS  - G5
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.454/
DO  - 10.5802/crmath.454
LA  - en
ID  - CRMATH_2023__361_G5_903_0
ER  - 
%0 Journal Article
%A Anza Hafsa, Omar
%A Mandallena, Jean-Philippe
%T Remarks on homogenization and $3D$-$2D$ dimension reduction of unbounded energies on thin films
%J Comptes Rendus. Mathématique
%D 2023
%P 903-910
%V 361
%N G5
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.454/
%R 10.5802/crmath.454
%G en
%F CRMATH_2023__361_G5_903_0
Anza Hafsa, Omar; Mandallena, Jean-Philippe. Remarks on homogenization and $3D$-$2D$ dimension reduction of unbounded energies on thin films. Comptes Rendus. Mathématique, Tome 361 (2023) no. G5, pp. 903-910. doi: 10.5802/crmath.454

[1] Anza Hafsa, Omar; Clozeau, Nicolas; Mandallena, Jean-Philippe Homogenization of nonconvex unbounded singular integrals, Ann. Math. Blaise Pascal, Volume 24 (2017) no. 2, pp. 135-193 | DOI | Numdam | Zbl

[2] Anza Hafsa, Omar; Leghmizi, Mohamed Lamine; Mandallena, Jean-Philippe On a homogenization technique for singular integrals, Asymptotic Anal., Volume 74 (2011) no. 3-4, pp. 123-134 | Zbl | DOI

[3] Anza Hafsa, Omar; Mandallena, Jean-Philippe The nonlinear membrane energy: variational derivation under the constraint “detu0, J. Math. Pures Appl., Volume 86 (2006) no. 2, pp. 100-115 | DOI | Zbl

[4] Anza Hafsa, Omar; Mandallena, Jean-Philippe The nonlinear membrane energy: variational derivation under the constraint “detu>0, Bull. Sci. Math., Volume 132 (2008) no. 4, pp. 272-291 | Zbl | DOI

[5] Anza Hafsa, Omar; Mandallena, Jean-Philippe Relaxation et passage 3D-2D avec contraintes de type déterminant (2009) (https://arxiv.org/abs/0901.3688)

[6] Anza Hafsa, Omar; Mandallena, Jean-Philippe Relaxation and 3d-2d passage theorems in hyperelasticity, J. Convex Anal., Volume 19 (2012) no. 3, pp. 759-794 | Zbl

[7] Anzellotti, Gabriele; Baldo, Sisto; Percivale, Danilo Dimension reduction in variational problems, asymptotic development in Γ-convergence and thin structures in elasticity, Asymptotic Anal., Volume 9 (1994) no. 1, pp. 61-100 | DOI | Zbl

[8] Ben Belgacem, Hafedh Modélisation de structures minces en élasticité non linéaire, Ph. D. Thesis, Université Pierre et Marie Curie (1996)

[9] Ben Belgacem, Hafedh Une méthode de Γ-convergence pour un modèle de membrane non linéaire, C. R. Acad. Sci. Paris, Volume 324 (1997) no. 7, pp. 845-849 | DOI | Zbl

[10] Ben Belgacem, Hafedh Relaxation of singular functionals defined on Sobolev spaces, ESAIM, Control Optim. Calc. Var., Volume 5 (2000), pp. 71-85 | Numdam | Zbl | DOI

[11] Braides, Andrea; Fonseca, Irene; Francfort, Gilles 3D-2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J., Volume 49 (2000) no. 4, pp. 1367-1404 | Zbl

[12] Dal Maso, Gianni An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser, 1993 | DOI

[13] Le Dret, Hervé; Raoult, Annie Le modèle de membrane non linéaire comme limite variationnelle de l’élasticité non linéaire tridimensionnelle, C. R. Acad. Sci. Paris, Volume 317 (1993) no. 2, pp. 221-226 | Zbl

[14] Le Dret, Hervé; Raoult, Annie The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 74 (1995) no. 6, pp. 549-578 | Zbl

[15] Percivale, Danilo The variational method for tensile structures (1991) (Preprint 16, Dipartimento di Matematica Politecnico di Torino)

[16] Shu, Y. C. Heterogeneous thin films of martensitic materials, Arch. Ration. Mech. Anal., Volume 153 (2000) no. 1, pp. 39-90 | DOI | Zbl

Cité par Sources :