Théorie des nombres
Dirichlet type extensions of Euler sums
Comptes Rendus. Mathématique, Tome 361 (2023) no. G6, pp. 979-1010

In this paper, we study the alternating Euler T-sums and S ˜-sums, which are infinite series involving (alternating) odd harmonic numbers, and have similar forms and close relations to the Dirichlet beta functions. By using the method of residue computations, we establish the explicit formulas for the (alternating) linear and quadratic Euler T-sums and S ˜-sums, from which, the parity theorems of Hoffman’s double and triple t-values and Kaneko–Tsumura’s double and triple T-values are further obtained. As supplements, we also show that the linear T-sums and S ˜-sums are expressible in terms of colored multiple zeta values. Some interesting consequences and illustrative examples are presented.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.453
Classification : 11A07, 11M32, 40A25

Xu, Ce 1 ; Wang, Weiping 2

1 School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, P.R. China
2 School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G6_979_0,
     author = {Xu, Ce and Wang, Weiping},
     title = {Dirichlet type extensions of {Euler} sums},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {979--1010},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G6},
     doi = {10.5802/crmath.453},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.453/}
}
TY  - JOUR
AU  - Xu, Ce
AU  - Wang, Weiping
TI  - Dirichlet type extensions of Euler sums
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 979
EP  - 1010
VL  - 361
IS  - G6
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.453/
DO  - 10.5802/crmath.453
LA  - en
ID  - CRMATH_2023__361_G6_979_0
ER  - 
%0 Journal Article
%A Xu, Ce
%A Wang, Weiping
%T Dirichlet type extensions of Euler sums
%J Comptes Rendus. Mathématique
%D 2023
%P 979-1010
%V 361
%N G6
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.453/
%R 10.5802/crmath.453
%G en
%F CRMATH_2023__361_G6_979_0
Xu, Ce; Wang, Weiping. Dirichlet type extensions of Euler sums. Comptes Rendus. Mathématique, Tome 361 (2023) no. G6, pp. 979-1010. doi: 10.5802/crmath.453

[1] Au, Kam Cheong Mathematica package MultipleZetaValues (2022) (https://www.researchgate.net/publication/357601353)

[2] Berndt, Bruce C. Ramanujan’s Notebooks. Part I, Springer, 1985 | DOI

[3] Bigotte, M.; Jacob, Gerard; Oussous, Nour E.; Petitot, Michel Lyndon words and shuffle algebras for generating the coloured multiple zeta values relations tables, Theor. Comput. Sci., Volume 273 (2002) no. 1-2, pp. 271-282 | DOI | MR | Zbl

[4] Blümlein, Johannes; Broadhurst, David J.; Vermaseren, Jos A. M. The multiple zeta value data mine, Comput. Phys., Volume 181 (2010) no. 3, pp. 582-625 | DOI | MR | Zbl

[5] Blümlein, Johannes; Kurth, Stefan Harmonic sums and Mellin transforms up to two loop order, Phys. Rev. D, Volume 60 (1999) no. 1, 014018

[6] Borwein, David; Borwein, Jonathan M. On an intriguing integral and some series related to ζ(4), Proc. Am. Math. Soc., Volume 123 (1995) no. 4, pp. 1191-1198 | Zbl | MR

[7] Borwein, David; Borwein, Jonathan M.; Girgensohn, Roland Explicit evaluation of Euler sums, Proc. Edinb. Math. Soc., Volume 38 (1995) no. 2, pp. 277-294 | DOI | MR | Zbl

[8] Broadhurst, David J. Multiple zeta values and modular forms in quantum field theory, Computer algebra in quantum field theory. Integration, summation and special functions (Texts and Monographs in Symbolic Computation), Springer, 2013, pp. 33-73 | MR | Zbl | DOI

[9] Chen, Hongwei Evaluations of some variant Euler sums, J. Integer Seq., Volume 9 (2006) no. 2, 06.2.3, 9 pages | MR | Zbl

[10] Chu, Wenchang Hypergeometric series and the Riemann zeta function, Acta Arith., Volume 82 (1997) no. 2, pp. 103-118 | MR | Zbl

[11] Coppo, Marc-Antoine; Candelpergher, Bernard Inverse binomial series and values of Arakawa-Kaneko zeta functions, J. Number Theory, Volume 150 (2015), pp. 98-119 | DOI | MR | Zbl

[12] de Doelder, Pieter J. On some series containing ψ(x)-ψ(y) and (ψ(x)-ψ(y)) 2 for certain values of x and y, J. Comput. Appl. Math., Volume 37 (1991) no. 1-3, pp. 125-141 | DOI | MR

[13] Flajolet, Philippe; Salvy, Bruno Euler sums and contour integral representations, Exp. Math., Volume 7 (1998) no. 1, pp. 15-35 | DOI | MR | Zbl

[14] Hoffman, Michael E. Multiple harmonic series, Pac. J. Math., Volume 152 (1992) no. 2, pp. 275-290 | DOI | MR | Zbl

[15] Hoffman, Michael E. An odd variant of multiple zeta values, Commun. Number Theory Phys., Volume 13 (2019) no. 3, pp. 529-567 | DOI | Zbl | MR

[16] Kaneko, Masanobu; Tsumura, Hirofumi On multiple zeta values of level two, Tsukuba J. Math., Volume 44 (2020) no. 2, pp. 213-234 | MR | Zbl

[17] Kaneko, Masanobu; Tsumura, Hirofumi Zeta functions connecting multiple zeta values and poly-Bernoulli numbers, Various aspects of multiple zeta functions (Advanced Studies in Pure Mathematics), Volume 84, Mathematical Society of Japan, 2020, pp. 181-204 | DOI | MR | Zbl

[18] Kassel, Christian Quantum Groups, Graduate Texts in Mathematics, 155, Springer, 1995 | DOI

[19] Sitaramachandrarao, Rudrabhatla A formula of S. Ramanujan, J. Number Theory, Volume 25 (1987) no. 1, pp. 1-19 | DOI | MR

[20] Xu, Ce Some evaluation of parametric Euler sums, J. Math. Anal. Appl., Volume 451 (2017) no. 2, pp. 954-975 | Zbl | MR

[21] Xu, Ce Explicit evaluations for several variants of Euler sums, Rocky Mt. J. Math., Volume 51 (2021) no. 3, pp. 1089-1106 | MR | Zbl

[22] Xu, Ce Extensions of Euler type sums and Ramanujan type sums, Kyushu J. Math., Volume 75 (2021) no. 2, pp. 295-322 | MR | Zbl

[23] Xu, Ce; Wang, Weiping Explicit formulas of Euler sums via multiple zeta values, J. Symb. Comput., Volume 101 (2020), pp. 109-127 | MR | Zbl

[24] Xu, Ce; Wang, Weiping Two variants of Euler sums, Monatsh. Math., Volume 199 (2022) no. 2, pp. 431-454 | MR | Zbl

[25] Zagier, Don Values of zeta functions and their applications, First European Congress of Mathematics, Vol. II (Paris, 1992) (Progress in Mathematics), Volume 120, Birkhäuser, 1994, pp. 497-512 | DOI | MR | Zbl

[26] Zhao, Jianqiang Multiple polylogarithm values at roots of unity, C. R. Math. Acad. Sci. Paris, Volume 346 (2008) no. 19-20, pp. 1029-1032 | DOI | Numdam | Zbl | MR

[27] Zheng, De-Yin Further summation formulae related to generalized harmonic numbers, J. Math. Anal. Appl., Volume 335 (2007) no. 1, pp. 692-706 | DOI | MR | Zbl

Cité par Sources :