We prove that a general Fano hypersurface in a projective space over an algebraically closed field is separably rationally connected.
Accepté le :
Accepté après révision le :
Publié le :
Zhu, Yi  1
CC-BY 4.0
@article{CRMATH_2024__362_G1_107_0,
author = {Zhu, Yi},
title = {Fano hypersurfaces in positive characteristic},
journal = {Comptes Rendus. Math\'ematique},
pages = {107--115},
year = {2024},
publisher = {Acad\'emie des sciences, Paris},
volume = {362},
number = {G1},
doi = {10.5802/crmath.438},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.438/}
}
TY - JOUR AU - Zhu, Yi TI - Fano hypersurfaces in positive characteristic JO - Comptes Rendus. Mathématique PY - 2024 SP - 107 EP - 115 VL - 362 IS - G1 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.438/ DO - 10.5802/crmath.438 LA - en ID - CRMATH_2024__362_G1_107_0 ER -
Zhu, Yi. Fano hypersurfaces in positive characteristic. Comptes Rendus. Mathématique, Tome 362 (2024) no. G1, pp. 107-115. doi: 10.5802/crmath.438
[1] Towards Mori’s program for the moduli space of stable maps, Am. J. Math., Volume 133 (2011) no. 5, pp. 1389-1419 | Zbl | DOI | MR
[2] Families of rationally connected varieties, J. Am. Math. Soc., Volume 16 (2003) no. 1, pp. 57-67 | DOI | MR | Zbl
[3] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI
[4] Every rationally connected variety over the function field of a curve has a rational point, Am. J. Math., Volume 125 (2003) no. 3, pp. 567-580 | DOI | MR | Zbl
[5] Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 32, Springer, 1996 | DOI
[6] Rationally connected varieties, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 429-448 | MR | Zbl
[7] Arithmetic over function fields, Arithmetic geometry (Clay Mathematics Proceedings), Volume 8, American Mathematical Society, 2009, pp. 375-418 | MR | Zbl
Cité par Sources :





