Article de recherche - Géométrie algébrique
Fano hypersurfaces in positive characteristic
Comptes Rendus. Mathématique, Tome 362 (2024) no. G1, pp. 107-115

We prove that a general Fano hypersurface in a projective space over an algebraically closed field is separably rationally connected.

Reçu le :
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/crmath.438

Zhu, Yi  1

1 United States
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G1_107_0,
     author = {Zhu, Yi},
     title = {Fano hypersurfaces in positive characteristic},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {107--115},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G1},
     doi = {10.5802/crmath.438},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.438/}
}
TY  - JOUR
AU  - Zhu, Yi
TI  - Fano hypersurfaces in positive characteristic
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 107
EP  - 115
VL  - 362
IS  - G1
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.438/
DO  - 10.5802/crmath.438
LA  - en
ID  - CRMATH_2024__362_G1_107_0
ER  - 
%0 Journal Article
%A Zhu, Yi
%T Fano hypersurfaces in positive characteristic
%J Comptes Rendus. Mathématique
%D 2024
%P 107-115
%V 362
%N G1
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.438/
%R 10.5802/crmath.438
%G en
%F CRMATH_2024__362_G1_107_0
Zhu, Yi. Fano hypersurfaces in positive characteristic. Comptes Rendus. Mathématique, Tome 362 (2024) no. G1, pp. 107-115. doi: 10.5802/crmath.438

[1] Chen, Dawei; Coskun, Izzet Towards Mori’s program for the moduli space of stable maps, Am. J. Math., Volume 133 (2011) no. 5, pp. 1389-1419 | Zbl | DOI | MR

[2] Graber, Tom; Harris, Joe; Starr, Jason M. Families of rationally connected varieties, J. Am. Math. Soc., Volume 16 (2003) no. 1, pp. 57-67 | DOI | MR | Zbl

[3] Hartshorne, Robin Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI

[4] de Jong, Aise J.; Starr, Jason M. Every rationally connected variety over the function field of a curve has a rational point, Am. J. Math., Volume 125 (2003) no. 3, pp. 567-580 | DOI | MR | Zbl

[5] Kollár, János Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 32, Springer, 1996 | DOI

[6] Kollár, János; Miyaoka, Yoichi; Mori, Shigefumi Rationally connected varieties, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 429-448 | MR | Zbl

[7] Starr, Jason M. Arithmetic over function fields, Arithmetic geometry (Clay Mathematics Proceedings), Volume 8, American Mathematical Society, 2009, pp. 375-418 | MR | Zbl

Cité par Sources :