Analyse et géométrie complexes
Optimal L 2 Extensions of Openness Type and Related Topics
Comptes Rendus. Mathématique, Tome 361 (2023) no. G3, pp. 679-683

We establish several optimal L 2 extension theorems of openness type on weakly pseudoconvex Kähler manifolds. We prove a product property for certain minimal L 2 extensions, which generalizes the product property of Bergman kernels. We describe a different approach to the Suita conjecture and its generalizations, which is based on a log-concavity for certain minimal L 2 integrals.

Nous établissons quelques théorèmes d’extension optimaux L 2 pour les formes ouvertes sur les variété Kähler faiblement pseudoconvexes. Nous prouvons les propriétés de produit de certaines extensions minimales de L 2 , qui généralisent les propriétés de produit du noyau Bergman. Sur la base de la concavité logarithmique de certaines intégrales minimales de L 2 , nous donnons une méthode différente pour la conjecture de Suita et son extension.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.437
Classification : 32D15, 32A36, 32L05, 32W05, 32E10, 14C30, 30C40

Xu, Wang 1 ; Zhou, Xiangyu 2

1 School of Mathematical Sciences, Peking University, Beijing, 100871, P. R. China
2 Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, P. R. China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G3_679_0,
     author = {Xu, Wang and Zhou, Xiangyu},
     title = {Optimal $L^2$ {Extensions} of {Openness} {Type} and {Related} {Topics}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {679--683},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G3},
     doi = {10.5802/crmath.437},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.437/}
}
TY  - JOUR
AU  - Xu, Wang
AU  - Zhou, Xiangyu
TI  - Optimal $L^2$ Extensions of Openness Type and Related Topics
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 679
EP  - 683
VL  - 361
IS  - G3
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.437/
DO  - 10.5802/crmath.437
LA  - en
ID  - CRMATH_2023__361_G3_679_0
ER  - 
%0 Journal Article
%A Xu, Wang
%A Zhou, Xiangyu
%T Optimal $L^2$ Extensions of Openness Type and Related Topics
%J Comptes Rendus. Mathématique
%D 2023
%P 679-683
%V 361
%N G3
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.437/
%R 10.5802/crmath.437
%G en
%F CRMATH_2023__361_G3_679_0
Xu, Wang; Zhou, Xiangyu. Optimal $L^2$ Extensions of Openness Type and Related Topics. Comptes Rendus. Mathématique, Tome 361 (2023) no. G3, pp. 679-683. doi: 10.5802/crmath.437

[1] Błocki, Zbigniew Suita conjecture and the Ohsawa-Takegoshi extension theorem, Invent. Math., Volume 193 (2013) no. 1, pp. 149-158 | Zbl | MR | DOI

[2] Błocki, Zbigniew A lower bound for the Bergman kernel and the Bourgain-Milman inequality, Geometric aspects of functional analysis, Springer, 2014, pp. 53-63 | Zbl | MR | DOI

[3] Błocki, Zbigniew; Zwonek, Włodzimierz One dimensional estimates for the Bergman kernel and logarithmic capacity, Proc. Am. Math. Soc., Volume 146 (2018) no. 6, pp. 2489-2495 | Zbl | MR | DOI

[4] Demailly, Jean-Pierre Estimations L 2 pour l’opérateur ¯ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982) no. 3, pp. 457-511 | DOI | Numdam | Zbl | MR

[5] Demailly, Jean-Pierre Scindage holomorphe d’un morphisme de fibrés vectoriels semi-positifs avec estimations L 2 , Seminar Pierre Lelong-Henri Skoda (Analysis), 1980/1981, Springer, 1982, pp. 77-107 | DOI | Zbl | MR

[6] Demailly, Jean-Pierre Complex analytic and differential geometry (2012) (e-book)

[7] Demailly, Jean-Pierre; Peternell, Thomas; Schneider, Michael Pseudo-effective line bundles on compact Kähler manifolds, Int. J. Math., Volume 12 (2001) no. 6, pp. 689-741 | Zbl | MR | DOI

[8] Guan, Qi’an A sharp effectiveness result of Demailly’s strong openness conjecture, Adv. Math., Volume 348 (2019), pp. 51-80 | Zbl | MR | DOI

[9] Guan, Qi’an; Mi, Zhitong Concavity of minimal L 2 integrals releted to multiplier ideal sheaves, Peking Math. J. (2022) (https://doi.org/10.1007/s42543-021-00047-5) | Zbl

[10] Guan, Qi’an; Mi, Zhitong; Yuan, Zheng Concavity property of minimal L 2 integrals with Lebesgue measurable gain II (2022) | arXiv

[11] Guan, Qi’an; Zhou, Xiangyu Optimal constant problem in the L 2 extension theorem, C. R. Math. Acad. Sci. Paris, Volume 350 (2012) no. 15-16, pp. 753-756 | Numdam | Zbl | MR | DOI

[12] Guan, Qi’an; Zhou, Xiangyu Optimal constant in an L 2 extension problem and a proof of a conjecture of Ohsawa, Sci. China Math., Volume 58 (2015) no. 1, pp. 35-59 | Zbl | MR | DOI

[13] Guan, Qi’an; Zhou, Xiangyu A solution of an L 2 extension problem with an optimal estimate and applications, Ann. Math., Volume 181 (2015) no. 3, pp. 1139-1208 | Zbl | MR | DOI

[14] Hosono, Genki On sharper estimates of Ohsawa-Takegoshi L 2 -extension theorem, J. Math. Soc. Japan, Volume 71 (2019) no. 3, pp. 909-914 | MR | Zbl

[15] Jennane, B. Extension d’une fonction définie sur une sous-variété avec contrôle de la croissance, Séminaire Pierre Lelong-Henri Skoda (Analyse), Année 1976/77, Springer, 1978, pp. 126-133 | DOI | Zbl | MR

[16] Suita, Nobuyuki Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., Volume 46 (1972), pp. 212-217 | Zbl | MR | DOI

[17] Xu, Wang; Zhou, Xiangyu Optimal L 2 extensions of openness type (2022) | arXiv

[18] Zhou, Xiangyu; Zhu, Langfeng An optimal L 2 extension theorem on weakly pseudoconvex Kähler manifolds, J. Differ. Geom., Volume 110 (2018) no. 1, pp. 135-186 | Zbl | MR | DOI

Cité par Sources :