We introduce a general class of symmetric polynomials that have saturated Newton polytope and their Newton polytope has integer decomposition property. The class covers numerous previously studied symmetric polynomials.
Révisé le :
Accepté le :
Publié le :
Nguyen, Duc-Khanh 1 ; Nguyen Thi Ngoc, Giao 2 ; Dang Tuan, Hiep 3 ; Do Le Hai, Thuy 4
CC-BY 4.0
@article{CRMATH_2023__361_G4_767_0,
author = {Nguyen, Duc-Khanh and Nguyen Thi Ngoc, Giao and Dang Tuan, Hiep and Do Le Hai, Thuy},
title = {Newton polytope of good symmetric polynomials},
journal = {Comptes Rendus. Math\'ematique},
pages = {767--775},
year = {2023},
publisher = {Acad\'emie des sciences, Paris},
volume = {361},
number = {G4},
doi = {10.5802/crmath.430},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.430/}
}
TY - JOUR AU - Nguyen, Duc-Khanh AU - Nguyen Thi Ngoc, Giao AU - Dang Tuan, Hiep AU - Do Le Hai, Thuy TI - Newton polytope of good symmetric polynomials JO - Comptes Rendus. Mathématique PY - 2023 SP - 767 EP - 775 VL - 361 IS - G4 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.430/ DO - 10.5802/crmath.430 LA - en ID - CRMATH_2023__361_G4_767_0 ER -
%0 Journal Article %A Nguyen, Duc-Khanh %A Nguyen Thi Ngoc, Giao %A Dang Tuan, Hiep %A Do Le Hai, Thuy %T Newton polytope of good symmetric polynomials %J Comptes Rendus. Mathématique %D 2023 %P 767-775 %V 361 %N G4 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.430/ %R 10.5802/crmath.430 %G en %F CRMATH_2023__361_G4_767_0
Nguyen, Duc-Khanh; Nguyen Thi Ngoc, Giao; Dang Tuan, Hiep; Do Le Hai, Thuy. Newton polytope of good symmetric polynomials. Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 767-775. doi: 10.5802/crmath.430
[1] Lattice points and lattice polytopes, Handbook of discrete and computational geometry, CRC Press, 2017, pp. 185-210
[2] Lattice polytopes from Schur and symmetric Grothendieck polynomials, Electron. J. Comb., Volume 28 (2021) no. 2, P2.45, 36 pages | MR | Zbl
[3] -vectors of Gorenstein polytopes, J. Comb. Theory, Ser. A, Volume 114 (2007) no. 1, pp. 65-76 | DOI | Zbl | MR
[4] Toric Varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, 2011
[5] Newton polytopes and symmetric Grothendieck polynomials, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 8, pp. 831-834 | Zbl | MR | Numdam | DOI
[6] Sur les polyèdres rationnels homothétiques à dimensions, C. R. Math. Acad. Sci. Paris, Volume 254 (1962), pp. 616-618 | Zbl
[7] Introduction to Toric Varieties, Annals of Mathematics Studies, 131, Princeton University Press, 2016
[8] Incomparability graphs of -free posets are -positive, Discrete Math., Volume 157 (1996) no. 1-3, pp. 193-197 | MR | Zbl | DOI
[9] Newton polytopes and tropical geometry, Russ. Math. Surv., Volume 76 (2021) no. 1, pp. 91-175 | Zbl | MR | DOI
[10] Combinatorial Hopf algebras and K-homology of Grassmanians, Int. Math. Res. Not., Volume 2007 (2007) no. 9, RMN125, 48 pages | Zbl
[11] The Newton polytope and Lorentzian property of chromatic symmetric functions (2022) | arXiv
[12] Newton polytopes in algebraic combinatorics, Sel. Math., New Ser., Volume 25 (2019) no. 5, 66, 37 pages | Zbl | MR
[13] Special simplices and Gorenstein toric rings, J. Comb. Theory, Ser. A, Volume 113 (2006) no. 4, pp. 718-725 | Zbl | MR | DOI
[14] An inequality, J. Lond. Math. Soc., Volume 27 (1952) no. 1, pp. 1-6 | DOI
[15] Unimodality questions for integrally closed lattice polytopes, Ann. Comb., Volume 17 (2013) no. 3, pp. 571-589 | Zbl | MR | DOI
[16] On the number of reduced decompositions of elements of Coxeter groups, Eur. J. Comb., Volume 5 (1984) no. 4, pp. 359-372 | Zbl | MR | DOI
[17] A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math., Volume 111 (1995) no. 1, pp. 166-194 | Zbl | MR | DOI
[18] Enumerative Combinatorics. Volume 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, 1999 | DOI
[19] On immanants of Jacobi–Trudi matrices and permutations with restricted position, J. Comb. Theory, Ser. A, Volume 62 (1993) no. 2, pp. 261-279 | Zbl | MR | DOI
[20] Shifted tableaux and the projective representations of symmetric groups, Adv. Math., Volume 74 (1989) no. 1, pp. 87-134 | Zbl | MR | DOI
[21] Immanants of totally positive matrices are nonnegative, Bull. Lond. Math. Soc., Volume 23 (1991) no. 5, p. 442-428 | Zbl | MR
[22] Grobner bases and convex polytopes, University Lecture Series, 8, American Mathematical Society, 1996
Cité par Sources :





