Algèbre
Fredholm modules over categories, Connes periodicity and classes in cyclic cohomology
Comptes Rendus. Mathématique, Tome 361 (2023) no. G3, pp. 617-652

We replace a ring with a small -linear category 𝒞, seen as a ring with several objects in the sense of Mitchell. We introduce Fredholm modules over this category and construct a Chern character taking values in the cyclic cohomology of 𝒞. We show that this categorified Chern character is homotopy invariant and is well-behaved with respect to the periodicity operator in cyclic cohomology. For this, we also obtain a description of cocycles and coboundaries in the cyclic cohomology of 𝒞 (and more generally, in the Hopf cyclic cohomology of a Hopf-module category) by means of DG-semicategories equipped with a trace on endomorphism spaces.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.429
Classification : 18E05, 47A53, 53C99, 58B34

Balodi, Mamta 1 ; Banerjee, Abhishek 1

1 Department of Mathematics, Indian Institute of Science, Bangalore - 560012, India
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G3_617_0,
     author = {Balodi, Mamta and Banerjee, Abhishek},
     title = {Fredholm modules over categories, {Connes} periodicity and classes in cyclic cohomology},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {617--652},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G3},
     doi = {10.5802/crmath.429},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.429/}
}
TY  - JOUR
AU  - Balodi, Mamta
AU  - Banerjee, Abhishek
TI  - Fredholm modules over categories, Connes periodicity and classes in cyclic cohomology
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 617
EP  - 652
VL  - 361
IS  - G3
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.429/
DO  - 10.5802/crmath.429
LA  - en
ID  - CRMATH_2023__361_G3_617_0
ER  - 
%0 Journal Article
%A Balodi, Mamta
%A Banerjee, Abhishek
%T Fredholm modules over categories, Connes periodicity and classes in cyclic cohomology
%J Comptes Rendus. Mathématique
%D 2023
%P 617-652
%V 361
%N G3
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.429/
%R 10.5802/crmath.429
%G en
%F CRMATH_2023__361_G3_617_0
Balodi, Mamta; Banerjee, Abhishek. Fredholm modules over categories, Connes periodicity and classes in cyclic cohomology. Comptes Rendus. Mathématique, Tome 361 (2023) no. G3, pp. 617-652. doi: 10.5802/crmath.429

[1] Akbarpour, R.; Khalkhali, M. Hopf algebra equivariant cyclic homology and cyclic homology of crossed product algebras, J. Reine Angew. Math., Volume 559 (2003), pp. 137-152 | DOI | MR | Zbl

[2] Baez, J. C. Higher-dimensional algebra. II. 2-Hilbert spaces, Adv. Math., Volume 127 (1997) no. 2, pp. 125-189 | DOI | MR | Zbl

[3] Balodi, M. Morita invariance of equivariant and Hopf-cyclic cohomology of module algebras over Hopf algebroids | arXiv

[4] Balodi, M.; Banerjee, A. Odd Fredholm modules over linear categories and cyclic cohomology (in preparation)

[5] Balodi, M.; Banerjee, A.; Ray, S. Cohomology of modules over H-categories and co-H-categories, Can. J. Math., Volume 72 (2020) no. 5, pp. 1352-1385 | DOI | MR | Zbl

[6] Balodi, M.; Banerjee, A.; Ray, S. On entwined modules over linear categories and Galois extensions, Isr. J. Math., Volume 241 (2021), pp. 623-692 | DOI | MR | Zbl

[7] Banerjee, A. On differential torsion theories and rings with several objects, Can. Math. Bull., Volume 62 (2019) no. 4, pp. 703-714 | DOI | MR | Zbl

[8] Böhm, G.; Lack, S.; Street, R. Idempotent splittings, colimit completion, and weak aspects of the theory of monads, J. Pure Appl. Algebra, Volume 216 (2012) no. 2, pp. 385-403 | DOI | MR | Zbl

[9] Caenepeel, S. Brauer groups, Hopf algebras and Galois theory, K-Monographs in Mathematics, 4, Kluwer Academic Publishers, 1998, xvi+488 pages | DOI

[10] Cibils, C.; Solotar, A. Galois coverings, Morita equivalence and smash extensions of categories over a field, Doc. Math., Volume 11 (2006), pp. 143-159 | DOI | MR | Zbl

[11] Connes, A. Cohomologie cyclique et foncteurs Ext n , C. R. Math. Acad. Sci. Paris, Volume 296 (1983) no. 23, pp. 953-958 | MR | Zbl

[12] Connes, A. Noncommutative differential geometry, Publ. Math., Inst. Hautes Étud. Sci., Volume 62 (1985), pp. 257-360 | DOI | Zbl

[13] Connes, A.; Moscovici, H. Hopf algebras, cyclic cohomology and the transverse index theorem, Commun. Math. Phys., Volume 198 (1998) no. 1, pp. 199-246 | DOI | MR | Zbl

[14] Connes, A.; Moscovici, H. Cyclic cohomology and Hopf algebras, Lett. Math. Phys., Volume 48 (1999) no. 1, pp. 97-108 Moshé Flato (1937–1998) | DOI | MR

[15] Connes, A.; Moscovici, H. Cyclic Cohomology and Hopf Algebra Symmetry, Lett. Math. Phys., Volume 52 (2000) no. 1, pp. 1-28 | DOI | MR | Zbl

[16] Deligne, P. Catégories tannakiennes, The Grothendieck Festschrift. Vol. II (Progress in Mathematics), Volume 87, Birkhäuser, 1990, pp. 111-195 | Zbl

[17] Estrada, S.; Virili, S. Cartesian modules over representations of small categories, Adv. Math., Volume 310 (2017), pp. 557-609 | DOI | MR | Zbl

[18] Hajac, P. M.; Khalkhali, M.; Rangipour, B.; Sommerhäuser, Y. Hopf-cyclic homology and cohomology with coefficients, C. R. Math. Acad. Sci. Paris, Volume 338 (2004) no. 9, pp. 667-672 | DOI | MR | Numdam | Zbl

[19] Hajac, P. M.; Khalkhali, M.; Rangipour, B.; Sommerhäuser, Y. Stable anti-Yetter-Drinfeld modules, C. R. Math. Acad. Sci. Paris, Volume 338 (2004) no. 8, pp. 587-590 | MR | Zbl | DOI | Numdam

[20] Hassanzadeh, M.; Khalkhali, M.; Shapiro, I. Monoidal categories, 2-traces, and cyclic cohomology, Can. Math. Bull., Volume 62 (2019) no. 2, pp. 293-312 | DOI | MR | Zbl

[21] Hassanzadeh, M.; Kucerovsky, D.; Rangipour, B. Generalized coefficients for Hopf cyclic cohomology, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 10 (2014), 093, 16 pages | MR | Zbl

[22] Henriques, A. G. What Chern-Simons theory assigns to a point, Proc. Natl. Acad. Sci. USA, Volume 114 (2017) no. 51, pp. 13418-13423 | MR | Zbl | DOI

[23] Henriques, A. G.; Penneys, D. Bicommutant categories from fusion categories, Sel. Math., New Ser., Volume 23 (2017) no. 3, pp. 1669-1708 | MR | DOI | Zbl

[24] Herscovich, E.; Solotar, A. Hochschild-Mitchell cohomology and Galois extensions, J. Pure Appl. Algebra, Volume 209 (2007) no. 1, pp. 37-55 | DOI | MR | Zbl

[25] Karoubi, M.; Villamayor, O. K-théorie algébrique et K-théorie topologique. I, Math. Scand., Volume 28 (1971), pp. 265-307 | DOI | Zbl

[26] Kaygun, A. Bialgebra cyclic homology with coefficients, K-Theory, Volume 34 (2005) no. 2, pp. 151-194 | DOI | MR | Zbl

[27] Kaygun, A. Products in Hopf-cyclic cohomology, Homology Homotopy Appl., Volume 10 (2008) no. 2, pp. 115-133 | DOI | MR | Zbl

[28] Kaygun, A. The universal Hopf-cyclic theory, J. Noncommut. Geom., Volume 2 (2008) no. 3, pp. 333-351 | DOI | MR | Zbl

[29] Kaygun, A.; Khalkhali, M. Bivariant Hopf cyclic cohomology, Commun. Algebra, Volume 38 (2010) no. 7, pp. 2513-2537 | DOI | MR | Zbl

[30] Keller, B. Deriving DG categories, Ann. Sci. Éc. Norm. Supér., Volume 27 (1994) no. 1, pp. 63-102 | DOI | MR | Numdam | Zbl

[31] Keller, B. On differential graded categories, International Congress of Mathematicians. Vol. II, European Mathematical Society, 2006, pp. 151-190 | Zbl

[32] Khalkhali, M.; Rangipour, B. Cup products in Hopf-cyclic cohomology, C. R. Math. Acad. Sci. Paris, Volume 340 (2005), pp. 9-14 | DOI | MR | Numdam | Zbl

[33] Kobyzev, I.; Shapiro, I. A Categorical Approach to Cyclic Cohomology of Quasi-Hopf Algebras and Hopf Algebroids, Appl. Categ. Struct., Volume 27 (2019) no. 1, pp. 85-109 | DOI | MR | Zbl

[34] Loday, J.-L Cyclic homology, Grundlehren der Mathematischen Wissenschaften, 301, Springer, 1992, xviii+454 pages | DOI | Numdam

[35] Lowen, W. Hochschild cohomology with support, Int. Math. Res. Not. (2015) no. 13, pp. 4741-4812 | DOI | MR | Zbl

[36] Lowen, W.; Van den Bergh, M. Deformation theory of abelian categories, Trans. Am. Math. Soc., Volume 358 (2006) no. 12, pp. 5441-5483 | DOI | MR | Zbl

[37] McCarthy, R. The cyclic homology of an exact category, J. Pure Appl. Algebra, Volume 93 (1994) no. 3, pp. 251-296 | DOI | MR | Zbl

[38] Mitchell, B. The dominion of Isbell, Trans. Am. Math. Soc., Volume 167 (1972), pp. 319-331 | Zbl | DOI | MR

[39] Mitchell, B. Rings with several objects, Adv. Math., Volume 8 (1972), pp. 1-161 | DOI | MR | Zbl

[40] Mitchell, B. Some applications of module theory to functor categories, Bull. Am. Math. Soc., Volume 84 (1978) no. 5, pp. 867-885 | DOI | MR | Zbl

[41] Murphy, G. J. C * -algebras and operator theory, Academic Press Inc., 1990, x+286 pages

[42] Rangipour, B. Cup products in Hopf cyclic cohomology via cyclic modules, Homology Homotopy Appl., Volume 10 (2008) no. 2, pp. 273-286 | DOI | MR | Zbl

[43] Schubert, H. Categories, Springer, 1972, xi+385 pages | DOI

[44] Toën, B.; Vaquié, M. Au-dessous de Spec , J. K-Theory, Volume 3 (2009) no. 3, pp. 437-500 | DOI | MR | Zbl

[45] Xu, F. Hochschild and ordinary cohomology rings of small categories, Adv. Math., Volume 219 (2008) no. 6, pp. 1872-1893 | DOI | MR | Zbl

[46] Xu, F. On the cohomology rings of small categories, J. Pure Appl. Algebra, Volume 212 (2008) no. 11, pp. 2555-2569 | DOI | MR | Zbl

Cité par Sources :