Analyse fonctionnelle, Analyse numérique
Stability of a weighted L2 projection in a weighted Sobolev norm
[Stabilité d’une projection L2 à poids dans une norme de Sobolev à poids]
Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 757-766

We prove the stability of a weighted L 2 projection operator onto piecewise linear finite elements spaces in a weighted Sobolev norm. Namely, we consider the orthogonal projections π N,ω from L 2 (𝔻,1/ω(x)dx) to 𝒳 N , where 𝔻 2 is the unit disk, ω(x)=1-|x| 2 and the spaces (𝒳 N ) N consist of piecewise linear functions on a family of shape-regular and quasi-uniform triangulations of 𝔻. We show that π N,ω is stable in a weighted Sobolev norm, and prove an upper bound on the stability constant that does not depend on N. The result also holds when the disk 𝔻 is replaced by a more general surface Γ 3 , replacing the weight ω by ω Γ (x):=d(x,Γ), the square root of the distance from x to the manifold boundary of Γ.

On démontre la stabilité dans une norme de Sobolev à poids, de la projection orthogonale par rapport au produit scalaire d’un espace L 2 à poids, sur une famille d’éléments finis linéaires par morceaux. Plus précisément, soit π N,ω , de L 2 (𝔻,1/ω(x)dx) dans 𝒳 N , où 𝔻 2 est le disque unité, ω(x)=1-|x| 2 et les espaces (𝒳 N ) N sont des espaces de fonctions continues et linéaires par morceaux sur une famille de triangulations régulière de 𝔻. On montre que π N,ω est stable dans une norme de Sobolev à poids, avec une borne supérieure sur la constante de stabilité qui ne dépend pas de N. Le résultat s’étend au cas de surfaces plus générales Γ 3 , en remplaçant le poids ω par ω Γ (x):=d(x,Γ), la racine carrée de la distance de x à Γ, le bord de Γ.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.426
Classification : 46E35, 65N12, 65N38

Averseng, Martin 1

1 Seminar for Applied Mathematics, ETH Zurich
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G4_757_0,
     author = {Averseng, Martin},
     title = {Stability of a weighted {L2} projection in a weighted {Sobolev} norm},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {757--766},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G4},
     doi = {10.5802/crmath.426},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.426/}
}
TY  - JOUR
AU  - Averseng, Martin
TI  - Stability of a weighted L2 projection in a weighted Sobolev norm
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 757
EP  - 766
VL  - 361
IS  - G4
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.426/
DO  - 10.5802/crmath.426
LA  - en
ID  - CRMATH_2023__361_G4_757_0
ER  - 
%0 Journal Article
%A Averseng, Martin
%T Stability of a weighted L2 projection in a weighted Sobolev norm
%J Comptes Rendus. Mathématique
%D 2023
%P 757-766
%V 361
%N G4
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.426/
%R 10.5802/crmath.426
%G en
%F CRMATH_2023__361_G4_757_0
Averseng, Martin. Stability of a weighted L2 projection in a weighted Sobolev norm. Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 757-766. doi: 10.5802/crmath.426

[1] Alouges, François; Averseng, Martin Quasi-local preconditioners for the weakly singular and hypersingular operators on a disk (2022) (under review)

[2] Bank, Randolph E.; Dupont, Todd An optimal order process for solving finite element equations, Math. Comput., Volume 36 (1981) no. 153, pp. 35-51 | MR | DOI | Zbl

[3] Bramble, James H.; Pasciak, Joseph E.; Schatz, Alfred H. The construction of preconditioners for elliptic problems by substructuring. I, Math. Comput., Volume 47 (1986) no. 175, pp. 103-134 | Zbl | MR | DOI

[4] Bramble, James H.; Pasciak, Joseph E.; Steinbach, Olaf On the stability of the L 2 projection in H 1 (ω), Math. Comput., Volume 71 (2002) no. 237, pp. 147-159 | Zbl | MR

[5] Bramble, James H.; Xu, Jinchao Some estimates for a weighted L 2 projection., Math. Comput., Volume 56 (1991) no. 194, pp. 463-476 | Zbl | MR

[6] Clément, Philippe Approximation by finite element functions using local regularization, Rev. Franc. Automat. Inform. Rech. Operat., Volume 9 (1975) no. R-2, pp. 77-84 | Zbl | Numdam | MR

[7] Costabel, Martin; Dauge, Monique; Duduchava, Roland Asymptotics without logarithmic terms for crack problems, Commun. Partial Differ. Equations, Volume 28 (2003) no. 5-6, pp. 869-926 | Zbl | MR | DOI

[8] Crouzeix, Michel; Thomée, Vidar The stability in L p and W p 1 of the L 2 -projection onto finite element function spaces, Math. Comput., Volume 48 (1987) no. 178, pp. 521-532

[9] Hurri, Ritva The weighted poincaré inequalities, Math. Scand., Volume 67 (1990) no. 1, pp. 145-160 | Zbl | MR | DOI

[10] McLean, William Strongly elliptic systems and boundary integral equations, Cambridge University Press, 2000, xiv+357 pages

[11] Pechstein, Clemens; Scheichl, Robert Weighted poincaré inequalities, IMA J. Numer. Anal., Volume 33 (2013) no. 2, pp. 652-686 | Zbl | DOI

[12] Steinbach, Olaf Stability estimates for hybrid coupled domain decomposition methods, Lecture Notes in Mathematics, 1809, Springer, 2003, vi+120 pages | DOI

Cité par Sources :