Algèbre
An inductive approach to generalized abundance using nef reduction
Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 417-421

We use the canonical bundle formula for parabolic fibrations to give an inductive approach to the generalized abundance conjecture using nef reduction. In particular, we observe that generalized abundance holds for a klt pair (X,B) if the nef dimension n(K X +B+L)=2 and K X +B0 or n(K X +B+L)=3 and κ(K X +B)>0.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.420

Chaudhuri, Priyankur 1

1 Department of Mathematics, University of Maryland, College Park, MD 20742, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G1_417_0,
     author = {Chaudhuri, Priyankur},
     title = {An inductive approach to generalized abundance using nef reduction},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {417--421},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G1},
     doi = {10.5802/crmath.420},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.420/}
}
TY  - JOUR
AU  - Chaudhuri, Priyankur
TI  - An inductive approach to generalized abundance using nef reduction
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 417
EP  - 421
VL  - 361
IS  - G1
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.420/
DO  - 10.5802/crmath.420
LA  - en
ID  - CRMATH_2023__361_G1_417_0
ER  - 
%0 Journal Article
%A Chaudhuri, Priyankur
%T An inductive approach to generalized abundance using nef reduction
%J Comptes Rendus. Mathématique
%D 2023
%P 417-421
%V 361
%N G1
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.420/
%R 10.5802/crmath.420
%G en
%F CRMATH_2023__361_G1_417_0
Chaudhuri, Priyankur. An inductive approach to generalized abundance using nef reduction. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 417-421. doi: 10.5802/crmath.420

[1] Ambro, Florin The nef dimension of log minimal models (2004) (https://arxiv.org/abs/math/0411471)

[2] Ambro, Florin Shokurov’s Boundary property, J. Differ. Geom., Volume 67 (2004) no. 2, pp. 229-255 | MR | Zbl

[3] Ambro, Florin The moduli b-divisor of an lc-trivial fibration, Compos. Math., Volume 141 (2005) no. 2, pp. 385-403 | DOI | MR | Zbl

[4] Bauer, Thomas; Campana, Frédéric; Eckl, Thomas; Kebekus, Stefan; Peternell, Thomas; Rams, Sławomir; Szemberg, Tomasz; Wotzlaw, Lorenz A reduction map for nef line bundles, Complex geometry (Göttingen, 2000), Springer, 2002, pp. 27-36 | DOI | Zbl

[5] Fujino, Osamu; Mori, Shigefumi A canonical bundle formula, J. Differ. Geom., Volume 56 (2000) no. 1, pp. 167-188 | MR | Zbl

[6] Gongyo, Yoshinori; Lehmann, Brian Reduction maps and minimal model theory, Compos. Math., Volume 149 (2013) no. 2, pp. 295-308 | DOI | MR | Zbl

[7] Kawamata, Yujirp; Matsuda, Katsumi; Matsuki, Kenji Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985 (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 283-360 | DOI | MR | Zbl

[8] Kollár, János; Mori, Shigefumi Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 (with the collaboration of C. H. Clemens and A. Corti. Translated from the 1998 Japanese original. ISBN: 0-521-63277-3) | DOI | Zbl

[9] Lazić, Vladimir; Floris, Enrica A travel guide to the canonical bundle formula, Birational Geometry and Moduli Spaces (Springer INdAM Series), Volume 39, Springer, 2020, pp. 37-55 | MR | Zbl

[10] Lazić, Vladimir; Peternell, Thomas On Generalised Abundance, I, Publ. Res. Inst. Math. Sci., Volume 56 (2020) no. 2, pp. 353-389 | DOI | MR | Zbl

[11] Lazić, Vladimir; Peternell, Thomas On Generalised Abundance, II, Peking Math. J., Volume 3 (2020) no. 1, pp. 1-46 | DOI | MR | Zbl

[12] Nakayama, Noboru Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004 | Numdam | Zbl

Cité par Sources :