Equations aux dérivées partielles
Asymptotic behavior of solutions of Monge–Ampère equations with general perturbations of boundary values
Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 337-347

In this paper, we consider the asymptotic behavior of solutions of Monge–Ampère equations with general boundary value conditions in half spaces, which reveals the accurate effect of boundary value condition on asymptotic behavior and improves the result in [13].

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.412
Classification : 35J96, 35B40

Jia, Xiaobiao 1 ; Li, Xuemei 2

1 School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China.
2 School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G1_337_0,
     author = {Jia, Xiaobiao and Li, Xuemei},
     title = {Asymptotic behavior of solutions of {Monge{\textendash}Amp\`ere} equations with general perturbations of boundary values},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {337--347},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G1},
     doi = {10.5802/crmath.412},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.412/}
}
TY  - JOUR
AU  - Jia, Xiaobiao
AU  - Li, Xuemei
TI  - Asymptotic behavior of solutions of Monge–Ampère equations with general perturbations of boundary values
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 337
EP  - 347
VL  - 361
IS  - G1
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.412/
DO  - 10.5802/crmath.412
LA  - en
ID  - CRMATH_2023__361_G1_337_0
ER  - 
%0 Journal Article
%A Jia, Xiaobiao
%A Li, Xuemei
%T Asymptotic behavior of solutions of Monge–Ampère equations with general perturbations of boundary values
%J Comptes Rendus. Mathématique
%D 2023
%P 337-347
%V 361
%N G1
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.412/
%R 10.5802/crmath.412
%G en
%F CRMATH_2023__361_G1_337_0
Jia, Xiaobiao; Li, Xuemei. Asymptotic behavior of solutions of Monge–Ampère equations with general perturbations of boundary values. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 337-347. doi: 10.5802/crmath.412

[1] Aleksandrov, Aleksandr D. Dirichlet’s problem for the equation Detz ij =φ(z 1 ,,z n ,z,x 1 ,,x n ), Vestn. Leningr. Univ., Mat. Mekh. Astron., Volume 13 (1958) no. 1, pp. 5-24 | MR | Zbl

[2] Axler, Sheldon J.; Bourdon, Paul; Ramey, Wade Harmonic function theory, Graduate Texts in Mathematics, 137, Springer, 1992 | DOI | Zbl

[3] Bakel’man, Il’ya J. A generalization of the solution of Monge–Ampère equations, Dokl. Akad. Nauk SSSR, n. Ser., Volume 114 (1957), pp. 1143-1145 | Zbl

[4] Bao, Jiguang; Li, Haigang; Li, Yan Yan On the exterior Dirichlet problem for Hessian equations, Trans. Am. Math. Soc., Volume 366 (2014) no. 12, pp. 6183-6200 | MR | Zbl

[5] Bao, Jiguang; Li, Haigang; Zhang, Lei Monge–Ampère equation on exterior domains, Calc. Var. Partial Differ. Equ., Volume 52 (2015) no. 1-2, pp. 39-63 | Zbl

[6] Caffarelli, Luis A. Topics in PDEs: The Monge–Ampère equation. Graduate course, Courant Institute, 1995

[7] Caffarelli, Luis A.; Li, Yan Yan An extension to a theorem of Jörgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., Volume 56 (2003) no. 5, pp. 549-583 | DOI | Zbl

[8] Calabi, Eugenio Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Mich. Math. J., Volume 5 (1958), pp. 105-126 | Zbl

[9] Cheng, Shiu-Yuen; Yau, Shing-Tung Complete affine hypersurfaces. I. The completeness of affine metrics, Commun. Pure Appl. Math., Volume 39 (1986) no. 6, pp. 839-866 | DOI | MR | Zbl

[10] Ferrer, Leonor; Martínez, Antonio; Milán, Francisco An extension of a theorem by K. Jörgens and a maximum principle at infinity for parabolic affine spheres, Math. Z., Volume 230 (1999) no. 3, pp. 471-486 | DOI | Zbl

[11] Ferrer, Leonor; Martínez, Antonio; Milán, Francisco The space of parabolic affine spheres with fixed compact boundary, Monatsh. Math., Volume 130 (2000) no. 1, pp. 19-27 | DOI | MR | Zbl

[12] Hong, Guanghao; Yuan, Yu Maximal hypersurfaces over exterior domains, Commun. Pure Appl. Math., Volume 74 (2021) no. 3, pp. 589-614 | DOI | MR | Zbl

[13] Jia, Xiaobiao; Li, Dongsheng The asymptotic behavior of viscosity solutions of Monge–Ampère equations in half space, Nonlinear Anal., Theory Methods Appl., Volume 206 (2021), 112229, 23 pages | Zbl

[14] Jiang, Tangyu; Li, Haigang; Li, Xiaoliang On the exterior Dirichlet problem for a class of fully nonlinear elliptic equations, Calc. Var. Partial Differ. Equ., Volume 60 (2021) no. 1, 17, 20 pages | MR | Zbl

[15] Jörgens, Konrad Über die Lösungen der Differentialgleichung rt-s 2 =1, Math. Ann., Volume 127 (1954), pp. 130-134 | DOI | Zbl

[16] Jost, Jürgen; Xin, Yuanlong Some aspects of the global geometry of entire space-like submanifolds, Results Math., Volume 40 (2001) no. 1-4, pp. 233-245 | DOI | MR | Zbl

[17] Li, Dongsheng; Li, Zhisu; Yuan, Yu A Bernstein problem for special Lagrangian equations in exterior domains, Adv. Math., Volume 361 (2020), 106927, 29 pages | MR | Zbl

[18] Li, Haigang; Bao, Jiguang The exterior Dirichlet problem for fully nonlinear elliptic equations related to the eigenvalues of the Hessian, J. Differ. Equations, Volume 256 (2014) no. 7, pp. 2480-2501 | MR | Zbl

[19] Li, Zhisu On the exterior Dirichlet problem for special Lagrangian equations, Trans. Am. Math. Soc., Volume 372 (2019) no. 2, pp. 889-924 | MR | Zbl

[20] Liu, Zixiao; Bao, Jiguang Asymptotic Expansion at Infinity of Solutions of Special Lagrangian Equations, J. Geom. Anal., Volume 32 (2022) no. 3, 90, 34 pages | MR | Zbl

[21] Mooney, Connor The Monge–Ampère equation (2018) (https://arxiv.org/abs/1806.09945)

[22] Pogorelo, Alekseĭ V. On the improper convex affine hyperspheres, Geom. Dedicata, Volume 1 (1972) no. 1, pp. 33-46 | MR | Zbl

[23] Savin, Ovidiu Pointwise C 2,α estimates at the boundary for the Monge–Ampère equation, J. Am. Math. Soc., Volume 26 (2013) no. 1, pp. 63-99 | DOI | Zbl

[24] Savin, Ovidiu A localization theorem and boundary regularity for a class of degenerate Monge–Ampère equations, J. Differ. Equations, Volume 256 (2014) no. 2, pp. 327-388 | DOI | Zbl

[25] Siegel, David; Talvila, E. O. Uniqueness for the n-dimensional half space Dirichlet problem, Pac. J. Math., Volume 175 (1996) no. 2, pp. 571-587 | DOI | MR | Zbl

[26] Zhang, Wei; Bao, Jiguang A Calabi theorem for solutions to the parabolic Monge–Ampère equation with periodic data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 5, pp. 1143-1173 | DOI | Zbl

[27] Zhang, Wei; Bao, Jiguang; Wang, Bo An extension of Jörgens-Calabi-Pogorelov theorem to parabolic Monge–Ampère equation, Calc. Var. Partial Differ. Equ., Volume 57 (2018) no. 3, 90, 36 pages | Zbl

[28] Zhou, Ziwei; Gong, Shuyu; Bao, Jiguang Ancient solutions of exterior problem of parabolic Monge–Ampère equations, Ann. Mat. Pura Appl., Volume 200 (2021) no. 4, pp. 1605-1624 | DOI | Zbl

Cité par Sources :