Systèmes dynamiques
Polynomial effective equidistribution
Comptes Rendus. Mathématique, Tome 361 (2023) no. G2, pp. 507-520

We prove effective equidistribution theorems, with polynomial error rate, for orbits of the unipotent subgroups of SL 2 (𝔩) in arithmetic quotients of SL 2 () and SL 2 (𝔩)×SL 2 (𝔩).

The proof is based on the use of a Margulis function, tools from incidence geometry, and the spectral gap of the ambient space.

Nous prouvons des théorémes d’équidistribution effectifs, avec un taux d’erreur polynomial pour les orbites des sous-groupes unipotents de SL 2 (𝔩) en quotients arithmétiques de SL 2 () et SL 2 (𝔩)×SL 2 (𝔩).

La preuve est basée sur l’utilisation d’une fonction de Margulis, des outils de la géométrie d’incidence, et le trou spectral de l’espace ambiant.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.411

Lindenstrauss, Elon 1 ; Mohammadi, Amir 2 ; Wang, Zhiren 3

1 The Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
2 Department of Mathematics, University of California, San Diego, CA 92093, USA
3 Pennsylvania State University, Department of Mathematics, University Park, PA 16802, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G2_507_0,
     author = {Lindenstrauss, Elon and Mohammadi, Amir and Wang, Zhiren},
     title = {Polynomial effective equidistribution},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {507--520},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G2},
     doi = {10.5802/crmath.411},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.411/}
}
TY  - JOUR
AU  - Lindenstrauss, Elon
AU  - Mohammadi, Amir
AU  - Wang, Zhiren
TI  - Polynomial effective equidistribution
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 507
EP  - 520
VL  - 361
IS  - G2
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.411/
DO  - 10.5802/crmath.411
LA  - en
ID  - CRMATH_2023__361_G2_507_0
ER  - 
%0 Journal Article
%A Lindenstrauss, Elon
%A Mohammadi, Amir
%A Wang, Zhiren
%T Polynomial effective equidistribution
%J Comptes Rendus. Mathématique
%D 2023
%P 507-520
%V 361
%N G2
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.411/
%R 10.5802/crmath.411
%G en
%F CRMATH_2023__361_G2_507_0
Lindenstrauss, Elon; Mohammadi, Amir; Wang, Zhiren. Polynomial effective equidistribution. Comptes Rendus. Mathématique, Tome 361 (2023) no. G2, pp. 507-520. doi: 10.5802/crmath.411

[1] Bourgain, Jean; Furman, Alex; Lindenstrauss, Elon; Mozes, Shahar Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus, J. Am. Math. Soc., Volume 24 (2011) no. 1, pp. 231-280 | DOI | MR | Zbl

[2] Chaika, Jon; Smillie, John; Weiss, Barak Tremors and horocycle dynamics on the moduli space of translation surfaces (2020) (https://arxiv.org/abs/2004.04027)

[3] Chow, Sam; Yang, Lei An effective Ratner equidistribution theorem for multiplicative Diophantine approximation on planar lines (2019) (https://arxiv.org/abs/1902.06081)

[4] Clozel, Laurent; Oh, Hee; Ullmo, Emmanuel Hecke operators and equidistribution of Hecke points, Invent. Math., Volume 144 (2001) no. 2, pp. 327-351 | DOI | MR | Zbl

[5] Dani, Shrikrishna G. On orbits of unipotent flows on homogeneous spaces, Ergodic Theory Dyn. Syst., Volume 4 (1984) no. 1, pp. 25-34 | DOI | MR | Zbl

[6] Dani, Shrikrishna G. On orbits of unipotent flows on homogeneous spaces. II, Ergodic Theory Dyn. Syst., Volume 6 (1986) no. 2, pp. 167-182 | DOI | Zbl | MR

[7] Dani, Shrikrishna G.; Margulis, Gregory Values of quadratic forms at primitive integral points, Invent. Math., Volume 98 (1989) no. 2, pp. 405-424 | DOI | MR | Zbl

[8] Dani, Shrikrishna G.; Margulis, Gregory Orbit closures of generic unipotent flows on homogeneous spaces of SL(3,R), Math. Ann., Volume 286 (1990) no. 1-3, pp. 101-128 | DOI | MR | Zbl

[9] Dani, Shrikrishna G.; Margulis, Gregory Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces, Proc. Indian Acad. Sci., Math. Sci., Volume 101 (1991) no. 1, pp. 1-17 | DOI | MR | Zbl

[10] Einsiedler, Manfred; Margulis, Gregory; Mohammadi, Amir; Venkatesh, Akshay Effective equidistribution and property (τ), J. Am. Math. Soc., Volume 33 (2020) no. 1, pp. 223-289 | DOI | MR | Zbl

[11] Einsiedler, Manfred; Margulis, Gregory; Venkatesh, Akshay Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces, Invent. Math., Volume 177 (2009) no. 1, pp. 137-212 | DOI | MR | Zbl

[12] Eskin, Alex; Margulis, Gregory; Mozes, Shahar Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. Math., Volume 147 (1998) no. 1, pp. 93-141 | DOI | MR | Zbl

[13] Eskin, Alex; Mirzakhani, Maryam Invariant and stationary measures for the SL(2,) action on moduli space, Publ. Math., Inst. Hautes Étud. Sci., Volume 127 (2018), pp. 95-324 | DOI | MR | Zbl

[14] Eskin, Alex; Mirzakhani, Maryam; Mohammadi, Amir Isolation, equidistribution, and orbit closures for the SL(2,) action on moduli space, Ann. Math., Volume 182 (2015) no. 2, pp. 673-721 | DOI | MR | Zbl

[15] Eskin, Alex; Mozes, Shahar Margulis Functions and Their Applications, Dynamics, Geometry, Number Theory: the impact of Margulis on modern mathematics (Fisher, David; Kleinbock, Dmitry; Soifer, Gregory, eds.), University of Chicago Press, 2022 | Zbl | DOI

[16] Flaminio, Livio; Forni, Giovanni; Tanis, James Effective equidistribution of twisted horocycle flows and horocycle maps, Geom. Funct. Anal., Volume 26 (2016) no. 5, pp. 1359-1448 | DOI | MR | Zbl

[17] Forni, Giovanni Limits of geodesic push-forwards of horocycle invariant measures, Ergodic Theory Dyn. Syst., Volume 41 (2021) no. 9, pp. 2782-2804 | DOI | MR | Zbl

[18] Garland, Howard; Raghunathan, Madabusi S. Fundamental Domains for Lattices in -rank 1 Semisimple Lie Groups, Ann. Math., Volume 92 (1970) no. 2, pp. 279-326 | DOI | Zbl

[19] Green, Ben; Tao, Terence The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. Math., Volume 175 (2012) no. 2, pp. 465-540 | DOI | MR | Zbl

[20] He, Weikun; de Saxcé, Nicolas Linear random walks on the torus (2019) (https://arxiv.org/abs/1910.13421v1)

[21] Jacquet, H.; Langlands, Robert P. Automorphic forms on GL(2), Lecture Notes in Mathematics, 114, Springer, 1970 | DOI | Zbl | MR

[22] Käenmäki, Antti; Orponen, Tuomas; Venieri, Laura A Marstrand-type restricted projection theorem in 3 (2017) (https://arxiv.org/abs/1708.04859v1)

[23] Katz, Asaf Quantitative disjointness of nilflows from horospherical flows (2019) (https://arxiv.org/abs/1910.04675)

[24] Kim, Wooyeon Effective equidistribution of expanding translates in the space of affine lattices (2021) (https://arxiv.org/abs/2110.00706)

[25] Kleinbock, Dmitry Y.; Margulis, Gregory Bounded orbits of nonquasiunipotent flows on homogeneous spaces, Sinai’s Moscow Seminar on Dynamical Systems (American Mathematical Society Translations, Series 2), Volume 171, American Mathematical Society, 1996, pp. 141-172 | Zbl

[26] Lindenstrauss, Elon; Margulis, Gregory Effective estimates on indefinite ternary forms, Isr. J. Math., Volume 203 (2014) no. 1, pp. 445-499 | DOI | MR | Zbl

[27] Lindenstrauss, Elon; Mohammadi, Amir Polynomial effective density in quotients of 3 and 2 × 2 (2021) (https://arxiv.org/abs/2112.14562v1)

[28] Lindenstrauss, Elon; Mohammadi, Amir; Margulis, Gregory; Shah, Nimish A. Quantitative behavior of unipotent flows and an effective avoidance principle (2019) (https://arxiv.org/abs/1904.00290v1)

[29] Margulis, Gregory The action of unipotent groups in a lattice space, Mat. Sb., N. Ser., Volume 86(128) (1971), pp. 552-556 | MR | Zbl

[30] Margulis, Gregory Indefinite quadratic forms and unipotent flows on homogeneous spaces, Dynamical systems and ergodic theory (Warsaw, 1986) (Banach Center Publications), Volume 23, Polish Academy of Sciences, 1989, pp. 399-409 | Zbl

[31] Margulis, Gregory Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 17, Springer, 1991 | DOI | MR | Zbl

[32] Mohammadi, Amir; Oh, Hee Isolations of geodesic planes in the frame bundle of a hyperbolic 3-manifold (2020) (https://arxiv.org/abs/2002.06579v1)

[33] Ratner, Marina On measure rigidity of unipotent subgroups of semisimple groups, Acta Math., Volume 165 (1990) no. 3-4, pp. 229-309 | DOI | Zbl

[34] Ratner, Marina On Raghunathan’s measure conjecture, Ann. Math., Volume 134 (1991) no. 3, pp. 545-607 | DOI | Zbl

[35] Ratner, Marina Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J., Volume 63 (1991) no. 1, pp. 235-280 | DOI | Zbl

[36] Schlag, Wilhelm On continuum incidence problems related to harmonic analysis, J. Funct. Anal., Volume 201 (2003) no. 2, pp. 480-521 | DOI | Zbl

[37] Selberg, Atle On discontinuous groups in higher-dimensional symmetric spaces, Contributions to function theory (internat. Colloq. Function Theory, Bombay, 1960), Tata Institute of Fundamental Research, 1960, pp. 147-164 | MR | Zbl

[38] Selberg, Atle On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., Vol. VIII, American Mathematical Society, 1965, pp. 1-15 | Zbl | MR

[39] Shah, Nimish A. Uniformly distributed orbits of certain flows on homogeneous spaces, Math. Ann., Volume 289 (1991) no. 2, pp. 315-334 | DOI | MR | Zbl

[40] Shah, Nimish A. Limit distributions of expanding translates of certain orbits on homogeneous spaces, Proc. Indian Acad. Sci., Math. Sci., Volume 106 (1996) no. 2, pp. 105-125 | DOI | MR | Zbl

[41] Strömbergsson, Andreas An effective Ratner equidistribution result for SL(2,) 2 , Duke Math. J., Volume 164 (2015) no. 5, pp. 843-902 | DOI | MR | Zbl

[42] Venkatesh, Akshay Sparse equidistribution problems, period bounds and subconvexity, Ann. Math., Volume 172 (2010) no. 2, pp. 989-1094 | DOI | MR | Zbl

[43] Weil, André On Discrete Subgroups of Lie Groups, Ann. Math., Volume 72 (1960) no. 2, pp. 369-384 | DOI | Zbl

[44] Weil, André Remarks on the Cohomology of Groups, Ann. Math., Volume 80 (1964) no. 1, pp. 149-157 | DOI | Zbl

[45] Wolff, Thomas H. Local smoothing type estimates on L p for large p, Geom. Funct. Anal., Volume 10 (2000) no. 5, pp. 1237-1288 | DOI | MR | Zbl

[46] Zahl, Joshua L 3 estimates for an algebraic variable coefficient Wolff circular maximal function, Rev. Mat. Iberoam., Volume 28 (2012) no. 4, pp. 1061-1090 | DOI | MR | Zbl

Cité par Sources :