The present paper deals with lines contained in a smooth complex cubic threefold. It is well-known that the set of lines of the second type on a cubic threefold is a curve on its Fano surface. Here we give a description of the singularities of this curve.
Accepté le :
Publié le :
Bockondas, Gloire Grâce 1 ; Boissière, Samuel 2
CC-BY 4.0
@article{CRMATH_2023__361_G4_747_0,
author = {Bockondas, Gloire Gr\^ace and Boissi\`ere, Samuel},
title = {Triple lines on a cubic threefold},
journal = {Comptes Rendus. Math\'ematique},
pages = {747--755},
year = {2023},
publisher = {Acad\'emie des sciences, Paris},
volume = {361},
number = {G4},
doi = {10.5802/crmath.410},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.410/}
}
TY - JOUR AU - Bockondas, Gloire Grâce AU - Boissière, Samuel TI - Triple lines on a cubic threefold JO - Comptes Rendus. Mathématique PY - 2023 SP - 747 EP - 755 VL - 361 IS - G4 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.410/ DO - 10.5802/crmath.410 LA - en ID - CRMATH_2023__361_G4_747_0 ER -
%0 Journal Article %A Bockondas, Gloire Grâce %A Boissière, Samuel %T Triple lines on a cubic threefold %J Comptes Rendus. Mathématique %D 2023 %P 747-755 %V 361 %N G4 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.410/ %R 10.5802/crmath.410 %G en %F CRMATH_2023__361_G4_747_0
Bockondas, Gloire Grâce; Boissière, Samuel. Triple lines on a cubic threefold. Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 747-755. doi: 10.5802/crmath.410
[1] Foundations of the theory of Fano schemes, Compos. Math., Volume 34 (1977) no. 1, p. 3-–47 | Numdam | MR | Zbl
[2] Cubic threefolds and hyperkähler manifolds uniformized by the 10-dimensional complex ball, Math. Ann., Volume 373 (2019) no. 3-4, pp. 1429-1455 | DOI | Zbl
[3] Counting lines on surfaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 6 (2007) no. 1, p. 39–52 | Numdam | MR | Zbl
[4] The intermediate Jacobian of the cubic threefold, Ann. Math., Volume 95 (1972), pp. 281-356 | MR | DOI | Zbl
[5] The geometry of cubic hypersurfaces (2020) (preprint)
[6] Geometry of Prym semicanonical pencils and an application to cubic threefolds (2021) (https://arxiv.org/abs/2106.08683, to appear in Mathematische Nachrichten)
[7] Algebraic equivalence modulo rational equivalence on a cubic threefold, Compos. Math., Volume 25 (1972) no. 2, pp. 161-206 | Numdam | MR | Zbl
[8] Elliptic curve configurations on Fano surfaces, Manuscr. Math., Volume 129 (2009) no. 3, pp. 161-206 | Zbl
[9] The Fano surface of the Fermat cubic threefold, Proc. Am. Math. Soc., Volume 139 (2011) no. 10, p. 3405–3412 | MR | Zbl
[10] Sagemath, the Sage Mathematics Software System (Version 3.7.7), 2020 (https://www.sagemath.org.)
[11] The geometry of the Fano surface of a nonsingular cubic and Torellitheorems for Fano surfaces and cubics, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 5 (1971)) no. 3, pp. 498-529 | Zbl
[12] On the set of singularities of the Poincaré divisor of the Picard variety of the Fano surface of a nonsingular cubic, Math. USSR, Izv., Volume 6 (1973) no. 5, pp. 938-948 | DOI | Zbl
Cité par Sources :





