Analyse numérique
Local decay rates of best-approximation errors using vector-valued finite elements for fields with low regularity and integrable curl or divergence
Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 723-736

We estimate best-approximation errors using vector-valued finite elements for fields with low regularity in the scale of the fractional-order Sobolev spaces. By assuming that the target field enjoys an additional integrability property on its curl or its divergence, we establish upper bounds on these errors that can be localized to the mesh cells. These bounds are derived using the quasi-interpolation errors with or without boundary prescription derived in [A. Ern and J.-L. Guermond, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 1367–1385]. In the present work, a localized upper bound on the quasi-interpolation error is derived by using the face-to-cell lifting operators analyzed in [A. Ern and J.-L. Guermond, Found. Comput. Math., (2021)] and by exploiting the additional assumption made on the curl or the divergence of the target field. As an illustration, we show how to apply these results to the error analysis of the curl-curl problem associated with Maxwell’s equations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.347
Classification : 65D05, 65N30, 41A65

Dong, Zhaonan 1, 2 ; Ern, Alexandre 2, 1 ; Guermond, Jean-Luc 3

1 Inria, 2 rue Simone Iff, 75589 Paris, France
2 CERMICS, Ecole des Ponts, 77455 Marne-la-Vallée, France
3 Department of Mathematics, Texas A&M University, 3368 TAMU, College Station, TX 77843, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G4_723_0,
     author = {Dong, Zhaonan and Ern, Alexandre and Guermond, Jean-Luc},
     title = {Local decay rates of best-approximation errors using vector-valued finite elements for fields with low regularity and integrable curl or divergence},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {723--736},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G4},
     doi = {10.5802/crmath.347},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.347/}
}
TY  - JOUR
AU  - Dong, Zhaonan
AU  - Ern, Alexandre
AU  - Guermond, Jean-Luc
TI  - Local decay rates of best-approximation errors using vector-valued finite elements for fields with low regularity and integrable curl or divergence
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 723
EP  - 736
VL  - 361
IS  - G4
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.347/
DO  - 10.5802/crmath.347
LA  - en
ID  - CRMATH_2023__361_G4_723_0
ER  - 
%0 Journal Article
%A Dong, Zhaonan
%A Ern, Alexandre
%A Guermond, Jean-Luc
%T Local decay rates of best-approximation errors using vector-valued finite elements for fields with low regularity and integrable curl or divergence
%J Comptes Rendus. Mathématique
%D 2023
%P 723-736
%V 361
%N G4
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.347/
%R 10.5802/crmath.347
%G en
%F CRMATH_2023__361_G4_723_0
Dong, Zhaonan; Ern, Alexandre; Guermond, Jean-Luc. Local decay rates of best-approximation errors using vector-valued finite elements for fields with low regularity and integrable curl or divergence. Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 723-736. doi: 10.5802/crmath.347

[1] Alonso, Ana; Valli, Alberto An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations, Math. Comput., Volume 68 (1999) no. 226, pp. 607-631 | MR | DOI | Zbl

[2] Amrouche, Chérif; Bernardi, Christine; Dauge, Monique; Girault, Vivette Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., Volume 21 (1998) no. 9, pp. 823-864 | MR | DOI | Zbl

[3] Bermúdez, Alfredo; Rodríguez, Rodolfo; Salgado, Pilar Numerical treatment of realistic boundary conditions for the eddy current problem in an electrode via Lagrange multipliers, Math. Comput., Volume 74 (2005) no. 249, pp. 123-151 | MR | DOI | Zbl

[4] Birman, Mikhail Sh.; Solomyak, Mikhaĭl Z. L 2 -theory of the Maxwell operator in arbitrary domains, Russ. Math. Surv., Volume 42 (1987) no. 6, p. 75 | Zbl | DOI

[5] Boffi, Daniele; Brezzi, Franco; Fortin, Michel Mixed finite element methods and applications, Springer Series in Computational Mathematics, 44, Springer, 2013 | Zbl | DOI

[6] Boffi, Daniele; Gastaldi, Lucia Interpolation estimates for edge finite elements and application to band gap computation, Appl. Numer. Math., Volume 56 (2006) no. 10-11, pp. 1283-1292 | MR | DOI | Zbl

[7] Bonito, Andrea; Guermond, Jean-Luc; Luddens, Francky Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains, J. Math. Anal. Appl., Volume 408 (2013) no. 259, pp. 498-512 | MR | DOI | Zbl

[8] Ciarlet, Patrick Jr.; Zou, Jun Fully discrete finite element approaches for time-dependent Maxwell’s equations, Numer. Math., Volume 82 (1999) no. 2, pp. 193-219 | MR | DOI | Zbl

[9] Costabel, Martin A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains, Math. Methods Appl. Sci., Volume 12 (1990) no. 4, pp. 365-368 | MR | Zbl | DOI

[10] Ern, Alexandre; Guermond, Jean-Luc Finite element quasi-interpolation and best approximation, ESAIM, Math. Model. Numer. Anal., Volume 51 (2017) no. 4, pp. 1367-1385 | MR | Zbl

[11] Ern, Alexandre; Guermond, Jean-Luc Abstract nonconforming error estimates and application to boundary penalty methods for diffusion equations and time-harmonic Maxwell’s equations, Comput. Methods Appl. Math., Volume 18 (2018) no. 3, pp. 451-475 | Zbl | MR | DOI

[12] Ern, Alexandre; Guermond, Jean-Luc Analysis of the edge finite element approximation of the Maxwell equations with low regularity solutions, Comput. Math. Appl., Volume 75 (2018) no. 3, pp. 918-932 | Zbl | MR | DOI

[13] Ern, Alexandre; Guermond, Jean-Luc Finite Elements I: Approximation and Interpolation, Texts in Applied Mathematics, 72, Springer, 2020 | Zbl

[14] Ern, Alexandre; Guermond, Jean-Luc Finite Elements II. Galerkin Approximation, Elliptic and Mixed PDEs, Texts in Applied Mathematics, 73, Springer, 2021 | Zbl | DOI

[15] Ern, Alexandre; Guermond, Jean-Luc Quasi-optimal nonconforming approximation of elliptic PDEs with contrasted coefficients and H 1+r , r>0, regularity, Found. Comput. Math., Volume 22 (2022) no. 5, pp. 1273-1308 | Zbl | DOI

[16] Grisvard, Pierre Singularities in boundary value problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], 22, Masson, 1992 | Zbl

[17] Jochmann, Frank Regularity of weak solutions of Maxwell’s equations with mixed boundary-conditions, Math. Methods Appl. Sci., Volume 22 (1999) no. 14, pp. 1255-1274 | MR | Zbl | DOI

[18] Monk, Peter Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation, Oxford University Press, 2003 | Zbl | DOI

Cité par Sources :