Article de recherche - Équations aux dérivées partielles, Mécanique
Boundary integral equation methods for Lipschitz domains in linear elasticity
Comptes Rendus. Mathématique, Tome 362 (2024) no. G4, pp. 453-468

A review of stable boundary integral equation methods for solving the Navier equation with either Dirichlet or Neumann boundary conditions in the exterior of a Lipschitz domain is presented. The conventional combined-field integral equation (CFIE) formulations, that are used to avoid spurious resonances, do not give rise to a coercive variational formulation for nonsmooth geometries anymore. To circumvent this issue, either the single layer or the double layer potential operator is composed with a compact or a Steklov–Poincaré type operator. The later can be constructed from the well-know elliptic boundary integral operators associated to the Laplace equation and Gårding’s inequalities are satisfied. Some Neumann interior eigenvalue computations for the unit square and cube are presented for forthcoming numerical investigations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.317
Classification : 35J25, 35P25, 35C15, 74B05, 65N12
Keywords: Boundary integral equation, Linear elasticity, Lipschitz domains, Gårding’s inequality, Eigenvalues

Le Louër, Frédérique  1

1 Alliance Sorbonne Université, Université de Technologie de Compiègne, LMAC EA2222 Laboratoire de Mathématiques Appliquées de Compiègne - CS 60319 - 60203 Compiègne cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G4_453_0,
     author = {Le Lou\"er, Fr\'ed\'erique},
     title = {Boundary integral equation methods for {Lipschitz} domains in linear elasticity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {453--468},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G4},
     doi = {10.5802/crmath.317},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.317/}
}
TY  - JOUR
AU  - Le Louër, Frédérique
TI  - Boundary integral equation methods for Lipschitz domains in linear elasticity
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 453
EP  - 468
VL  - 362
IS  - G4
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.317/
DO  - 10.5802/crmath.317
LA  - en
ID  - CRMATH_2024__362_G4_453_0
ER  - 
%0 Journal Article
%A Le Louër, Frédérique
%T Boundary integral equation methods for Lipschitz domains in linear elasticity
%J Comptes Rendus. Mathématique
%D 2024
%P 453-468
%V 362
%N G4
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.317/
%R 10.5802/crmath.317
%G en
%F CRMATH_2024__362_G4_453_0
Le Louër, Frédérique. Boundary integral equation methods for Lipschitz domains in linear elasticity. Comptes Rendus. Mathématique, Tome 362 (2024) no. G4, pp. 453-468. doi: 10.5802/crmath.317

[1] Agranovich, Mikhail S.; Amosov, B. A.; Levitin, Maria Spectral problems for the Lamé system with spectral parameter in boundary conditions on smooth or nonsmooth boundary, Russ. J. Math. Phys., Volume 6 (1999) no. 3, pp. 247-281 | Zbl | MR

[2] Buffa, Annalisa; Costabel, Martin; Sheen, Dongwoo On traces for H(curl,Ω) in Lipschitz domains, J. Math. Anal. Appl., Volume 276 (2002) no. 2, pp. 845-867 | DOI | MR

[3] Buffa, Annalisa; Hiptmair, Ralf Regularized combined field integral equations, Numer. Math., Volume 100 (2005) no. 1, pp. 1-19 | DOI | MR

[4] Colton, David; Kress, Rainer Integral equation methods in scattering theory, Classics in Applied Mathematics, 72, Society for Industrial and Applied Mathematics, 2013, xvi+271 pages | DOI | MR

[5] Costabel, Martin Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal., Volume 19 (1988) no. 3, pp. 613-626 | DOI | MR

[6] Costabel, Martin; Le Louër, Frédérique On the Kleinman-Martin integral equation method for electromagnetic scattering by a dielectric body, SIAM J. Appl. Math., Volume 71 (2011) no. 2, pp. 635-656 | DOI | MR

[7] Costabel, Martin; Stephan, Ernst P. Coupling of finite and boundary element methods for an elastoplastic interface problem, SIAM J. Numer. Anal., Volume 27 (1990) no. 5, pp. 1212-1226 | DOI | MR

[8] Costabel, Martin; Stephan, Ernst P. Integral equations for transmission problems in linear elasticity, J. Integral Equations Appl., Volume 2 (1990) no. 2, pp. 211-223 | DOI

[9] Darbas, Marion; Le Louër, Frédérique Well-conditioned boundary integral formulations for high-frequency elastic scattering problems in three dimensions, Math. Methods Appl. Sci., Volume 38 (2015) no. 9, pp. 1705-1733 | DOI | MR

[10] Engleder, S.; Steinbach, Olaf Modified boundary integral formulations for the Helmholtz equation, J. Math. Anal. Appl., Volume 331 (2007) no. 1, pp. 396-407 | DOI | MR

[11] Engleder, S.; Steinbach, Olaf Stabilized boundary element methods for exterior Helmholtz problems, Numer. Math., Volume 110 (2008) no. 2, pp. 145-160 | DOI | MR

[12] Gächter, Günter K.; Grote, Marcus J. Dirichlet-to-Neumann map for three-dimensional elastic waves, Wave Motion, Volume 37 (2003) no. 3, pp. 293-311 | DOI | MR

[13] Grebenkov, Denis S.; Nguyen, Binh-Thanh Geometrical structure of Laplacian eigenfunctions, SIAM Rev., Volume 55 (2013) no. 4, pp. 601-667 | DOI | MR

[14] Henrot, Antoine; Pierre, Michel Variation et optimisation de formes. Une analyse géométrique, Mathématiques & Applications, 48, Springer, 2005, xii+334 pages | DOI | MR

[15] Hsiao, George C.; Wendland, Wolfgang L. Boundary integral equations, Applied Mathematical Sciences, 164, Springer, 2008, xx+618 pages | DOI | MR

[16] Ivanyshyn, Olha; Le Louër, Frédérique An inverse parameter problem with generalized impedance boundary condition for two-dimensional linear viscoelasticity, SIAM J. Appl. Math., Volume 81 (2021) no. 4, pp. 1668-1690 | MR

[17] Kupradze, Viktor D.; Gegelia, Tengiz G.; Basheleĭshvili, Mikheil O.; Burčuladze, T. V. Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity, North-Holland Series in Applied Mathematics and Mechanics, 25, North-Holland, 1979, xix+929 pages (Edited by V. D. Kupradze)

[18] Le Louër, Frédérique A high order spectral algorithm for elastic obstacle scattering in three dimensions, J. Comput. Phys., Volume 279 (2014), pp. 1-17 | DOI | MR

[19] Le Louër, Frédérique A domain derivative-based method for solving elastodynamic inverse obstacle scattering problems, Inverse Probl., Volume 31 (2015) no. 11, 115006, 27 pages | DOI | MR

[20] Le Louër, Frédérique; Rais, R. On the coupling between finite elements and integral representation for linear elastic waves scattering problems: analysis and simulation (2023) (submitted)

[21] McLean, William Strongly elliptic systems and boundary integral equations, Cambridge University Press, 2000, xiv+357 pages | MR

[22] Nédélec, Jean-Claude; Planchard, Jacques Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans R 3 , Rev. Franc. Automat. Inform. Rech. Operat., Volume 7 (1973) no. R-3, pp. 105-129 | Zbl | MR | Numdam

[23] Of, Günther; Steinbach, Olaf A fast multipole boundary element method for a modified hypersingular boundary integral equation, Analysis and simulation of multifield problems. Selected papers of the international conference on multifield problems (Stuttgart, 2002) (Lecture Notes in Applied and Computational Mechanics), Volume 12, Springer, 2003, pp. 163-169

[24] Steinbach, Olaf A note on the ellipticity of the single layer potential in two-dimensional linear elastostatics, J. Math. Anal. Appl., Volume 294 (2004) no. 1, pp. 1-6 | DOI

[25] Steinbach, Olaf; Windisch, Markus Modified combined field integral equations for electromagnetic scattering, SIAM J. Numer. Anal., Volume 47 (2009) no. 2, pp. 1149-1167 | DOI | Zbl | MR

Cité par Sources :