We prove the existence of ground state solutions to critical growth -Laplacian and fractional -Laplacian problems that are nonresonant at zero.
Accepté le :
Publié le :
Perera, Kanishka 1
CC-BY 4.0
@article{CRMATH_2021__359_9_1161_0,
author = {Perera, Kanishka},
title = {On the existence of ground state solutions to critical growth problems nonresonant at zero},
journal = {Comptes Rendus. Math\'ematique},
pages = {1161--1164},
year = {2021},
publisher = {Acad\'emie des sciences, Paris},
volume = {359},
number = {9},
doi = {10.5802/crmath.270},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.270/}
}
TY - JOUR AU - Perera, Kanishka TI - On the existence of ground state solutions to critical growth problems nonresonant at zero JO - Comptes Rendus. Mathématique PY - 2021 SP - 1161 EP - 1164 VL - 359 IS - 9 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.270/ DO - 10.5802/crmath.270 LA - en ID - CRMATH_2021__359_9_1161_0 ER -
%0 Journal Article %A Perera, Kanishka %T On the existence of ground state solutions to critical growth problems nonresonant at zero %J Comptes Rendus. Mathématique %D 2021 %P 1161-1164 %V 359 %N 9 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.270/ %R 10.5802/crmath.270 %G en %F CRMATH_2021__359_9_1161_0
Perera, Kanishka. On the existence of ground state solutions to critical growth problems nonresonant at zero. Comptes Rendus. Mathématique, Tome 359 (2021) no. 9, pp. 1161-1164. doi: 10.5802/crmath.270
[1] Some results on -Laplace equations with a critical growth term, Differ. Integral Equ., Volume 11 (1998) no. 2, pp. 311-326 | MR | Zbl
[2] Ground state and multiple solutions for a critical exponent problem, NoDEA, Nonlinear Differ. Equ. Appl., Volume 19 (2012) no. 3, pp. 253-277 | DOI | MR
[3] Linking solutions for -Laplace equations with nonlinearity at critical growth, J. Funct. Anal., Volume 256 (2009) no. 11, pp. 3643-3659 | MR | DOI | Zbl
[4] Existence and nonexistence results for -Laplace equations involving critical Sobolev exponents, Arch. Ration. Mech. Anal., Volume 104 (1988) no. 1, pp. 57-77 | Zbl | MR | DOI
[5] Existence and nonuniqueness for the -Laplacian: nonlinear eigenvalues, Commun. Partial Differ. Equations, Volume 12 (1987) no. 12, pp. 1389-1430 | MR | Zbl
[6] Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., Theory Methods Appl., Volume 13 (1989) no. 8, pp. 879-902 | DOI | MR | Zbl
[7] The Brezis–Nirenberg problem for the fractional -Laplacian, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 4, 105, 25 pages | MR | Zbl
[8] Nontrivial critical groups in -Laplacian problems via the Yang index, Topol. Methods Nonlinear Anal., Volume 21 (2003) no. 2, pp. 301-309 | Zbl | MR | DOI
[9] Bifurcation and multiplicity results for critical fractional -Laplacian problems, Math. Nachr., Volume 289 (2016) no. 2-3, pp. 332-342 | MR | DOI | Zbl
[10] Bifurcation and multiplicity results for critical -Laplacian problems, Topol. Methods Nonlinear Anal., Volume 47 (2016) no. 1, pp. 187-194 | MR
[11] Ground state solutions for a semilinear problem with critical exponent, Differ. Integral Equ., Volume 22 (2009) no. 9-10, pp. 913-926 | MR | Zbl
Cité par Sources :





