The evenness and the values modulo of the lengths of the periods of the continued fraction expansions of and for a prime are known. Here we prove similar results for the continued fraction expansion of , where are distinct primes.
Accepté le :
Publié le :
Louboutin, Stéphane R. 1
CC-BY 4.0
@article{CRMATH_2021__359_9_1201_0,
author = {Louboutin, St\'ephane R.},
title = {On the continued fraction expansions of $(1+\protect \sqrt{pq})/2$ and $\protect \sqrt{pq}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {1201--1205},
year = {2021},
publisher = {Acad\'emie des sciences, Paris},
volume = {359},
number = {9},
doi = {10.5802/crmath.266},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.266/}
}
TY - JOUR
AU - Louboutin, Stéphane R.
TI - On the continued fraction expansions of $(1+\protect \sqrt{pq})/2$ and $\protect \sqrt{pq}$
JO - Comptes Rendus. Mathématique
PY - 2021
SP - 1201
EP - 1205
VL - 359
IS - 9
PB - Académie des sciences, Paris
UR - https://www.numdam.org/articles/10.5802/crmath.266/
DO - 10.5802/crmath.266
LA - en
ID - CRMATH_2021__359_9_1201_0
ER -
%0 Journal Article
%A Louboutin, Stéphane R.
%T On the continued fraction expansions of $(1+\protect \sqrt{pq})/2$ and $\protect \sqrt{pq}$
%J Comptes Rendus. Mathématique
%D 2021
%P 1201-1205
%V 359
%N 9
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.266/
%R 10.5802/crmath.266
%G en
%F CRMATH_2021__359_9_1201_0
Louboutin, Stéphane R. On the continued fraction expansions of $(1+\protect \sqrt{pq})/2$ and $\protect \sqrt{pq}$. Comptes Rendus. Mathématique, Tome 359 (2021) no. 9, pp. 1201-1205. doi: 10.5802/crmath.266
[1] On the period of the continued fraction of , Acta Arith., Volume 196 (2020) no. 3, pp. 291-302 | MR | Zbl
[2] Legendre symbols and continued fractions, Acta Arith., Volume 59 (1991) no. 4, pp. 365-379 | MR | DOI | Zbl
[3] Quadratic irrationals with fixed period length in the continued fraction expansion, J. Math. Sci., New York, Volume 70 (1994) no. 6, pp. 2059-2076 | DOI
[4] Vorlesungen über Zahlentheorie, Grundlehren der Mathematischen Wissenschaften, 59, Springer, 1964 | DOI | Zbl
[5] Introduction to number theory, Springer, 1982 (translated from the Chinese by Peter Shiu) | DOI
[6] Continued fractions and real quadratic fields, J. Number Theory, Volume 30 (1988) no. 2, pp. 167-176 | Zbl | MR | DOI
[7] Groupes des classes d’idéaux triviaux, Acta Arith., Volume 54 (1989) no. 1, pp. 61-74 | DOI | Zbl
[8] On the continued fraction expansions of and for primes , Class groups of Number fields and related topics, Springer, 2020, pp. 175-178 | DOI
[9] Die Lehre von den Kettenbrüchen. Band I. 3. erweiterte und verbesserte Aufl., Teubner, 1954
[10] A note on Jacobi symbols and continued fractions, Am. Math. Mon., Volume 106 (1999) no. 1, pp. 52-56 | MR | Zbl | DOI
Cité par Sources :





