We consider a semi-periodic two-dimensional Schrödinger operator which is cut at an angle. When the cut is commensurate with the periodic lattice, the spectrum of the operator has the band-gap Bloch structure. We prove that in the incommensurable case, there are no gaps: the gaps of the bulk operator are filled with edge spectrum.
Révisé le :
Accepté le :
Publié le :
Gontier, David 1
CC-BY 4.0
@article{CRMATH_2021__359_8_949_0,
author = {Gontier, David},
title = {Spectral properties of periodic systems cut at an angle},
journal = {Comptes Rendus. Math\'ematique},
pages = {949--958},
year = {2021},
publisher = {Acad\'emie des sciences, Paris},
volume = {359},
number = {8},
doi = {10.5802/crmath.251},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.251/}
}
TY - JOUR AU - Gontier, David TI - Spectral properties of periodic systems cut at an angle JO - Comptes Rendus. Mathématique PY - 2021 SP - 949 EP - 958 VL - 359 IS - 8 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.251/ DO - 10.5802/crmath.251 LA - en ID - CRMATH_2021__359_8_949_0 ER -
%0 Journal Article %A Gontier, David %T Spectral properties of periodic systems cut at an angle %J Comptes Rendus. Mathématique %D 2021 %P 949-958 %V 359 %N 8 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.251/ %R 10.5802/crmath.251 %G en %F CRMATH_2021__359_8_949_0
Gontier, David. Spectral properties of periodic systems cut at an angle. Comptes Rendus. Mathématique, Tome 359 (2021) no. 8, pp. 949-958. doi: 10.5802/crmath.251
[1] Spectral asymmetry and Riemannian geometry. III, Math. Proc. Camb. Philos. Soc., Volume 79 (1976) no. 1, pp. 71-99 | Zbl | MR | DOI
[2] Almost periodic Schrödinger operators II. The integrated density of states, Duke Math. J., Volume 50 (1983) no. 1, pp. 369-391 | Zbl | DOI
[3] Déterminant relatif et la fonction Xi, Am. J. Math., Volume 124 (2002) no. 2, pp. 307-352 | Zbl | MR | DOI
[4] Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators, Commun. Math. Phys., Volume 34 (1973) no. 4, pp. 251-270 | Zbl | DOI
[5] Scattering theory for systems with different spatial asymptotics on the left and right, Commun. Math. Phys., Volume 63 (1978) no. 3, pp. 277-301 | Zbl | MR | DOI
[6] Edge states for second order elliptic operators (2021) | arXiv
[7] Spectral properties of grain boundaries at small angles of rotation, J. Spectr. Theory, Volume 1 (2011), pp. 197-219 | MR | Zbl | DOI
[8] A variational approach to dislocation problems for periodic Schrödinger operators, J. Math. Anal. Appl., Volume 381 (2011) no. 1, pp. 166-178 | Zbl | DOI
[9] Dislocation problems for periodic Schrödinger operators and mathematical aspects of small angle grain boundaries, Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations, Springer, 2012, pp. 421-432 | Zbl | DOI
[10] Bound states for nano-tubes with a dislocation, J. Math. Anal. Appl., Volume 431 (2015) no. 1, pp. 202-227 | Zbl | MR | DOI
[11] Perturbation theory for linear operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer, 2013 | Zbl
[12] Self-adjoint Fredholm operators and spectral flow, Can. Math. Bull., Volume 39 (1996) no. 4, pp. 460-467 | Zbl | MR | DOI
[13] Methods of Modern Mathematical Physics Vol. I: Functional analysis, Academic Press Inc., 1972 | Zbl | DOI
[14] Methods of Modern Mathematical Physics. IV: Analysis of Operators, Academic Press Inc., 1977 | Zbl
[15] Methods of Modern Mathematical Physics. III, Scattering Theory, Academic Press Inc., 1978 | Zbl
[16] Schrödinger semigroups, Bull. Am. Math. Soc., Volume 7 (1982) no. 3, pp. 447-526 | Zbl | DOI
Cité par Sources :





