We obtain several convexity statements involving positive definite matrices. In particular, if are invertible matrices and are positive, we show that the map
is jointly convex on . This is related to some exotic matrix Hölder inequalities such as
for all positive matrices , such that , conjugate exponents and unitarily invariant norms . Our approach to obtain these results consists in studying the behaviour of some functionals along the geodesics of the Riemanian manifold of positive definite matrices.
Révisé le :
Accepté le :
Publié le :
Bourin, Jean-Christophe 1 ; Shao, Jingjing 2
CC-BY 4.0
@article{CRMATH_2020__358_6_645_0,
author = {Bourin, Jean-Christophe and Shao, Jingjing},
title = {Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices},
journal = {Comptes Rendus. Math\'ematique},
pages = {645--649},
year = {2020},
publisher = {Acad\'emie des sciences, Paris},
volume = {358},
number = {6},
doi = {10.5802/crmath.25},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.25/}
}
TY - JOUR
AU - Bourin, Jean-Christophe
AU - Shao, Jingjing
TI - Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices
JO - Comptes Rendus. Mathématique
PY - 2020
SP - 645
EP - 649
VL - 358
IS - 6
PB - Académie des sciences, Paris
UR - https://www.numdam.org/articles/10.5802/crmath.25/
DO - 10.5802/crmath.25
LA - en
ID - CRMATH_2020__358_6_645_0
ER -
%0 Journal Article
%A Bourin, Jean-Christophe
%A Shao, Jingjing
%T Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices
%J Comptes Rendus. Mathématique
%D 2020
%P 645-649
%V 358
%N 6
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.25/
%R 10.5802/crmath.25
%G en
%F CRMATH_2020__358_6_645_0
Bourin, Jean-Christophe; Shao, Jingjing. Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices. Comptes Rendus. Mathématique, Tome 358 (2020) no. 6, pp. 645-649. doi: 10.5802/crmath.25
[1] Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl., Volume 26 (1979), pp. 203-241 | MR | DOI | Zbl
[2] Matrix Analysis, Graduate Texts in Mathematics, 169, Springer, 1996 | Zbl
[3] Positive Definite Matrices, Princeton Series in Applied Mathematics, Princeton University Press, 2007 | Zbl
[4] Matrix inequalities from a two variables functional, Int. J. Math., Volume 27 (2016) no. 9, 16500771, 19 pages | MR | Zbl
[5] Convexity according to the geometric mean, Math. Inequal. Appl., Volume 3 (2000) no. 2, pp. 155-167 | MR | Zbl
Cité par Sources :





