We give a topological proof that a free inverse monoid on one or more generators is neither of type left- nor right-. This strengthens a classical result of Schein that such monoids are not finitely presented as monoids.
Révisé le :
Accepté le :
Publié le :
Gray, Robert D. 1 ; Steinberg, Benjamin 2
CC-BY 4.0
@article{CRMATH_2021__359_8_1047_0,
author = {Gray, Robert D. and Steinberg, Benjamin},
title = {Free inverse monoids are not ${\protect \rm FP}_2$},
journal = {Comptes Rendus. Math\'ematique},
pages = {1047--1057},
year = {2021},
publisher = {Acad\'emie des sciences, Paris},
volume = {359},
number = {8},
doi = {10.5802/crmath.247},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.247/}
}
TY - JOUR
AU - Gray, Robert D.
AU - Steinberg, Benjamin
TI - Free inverse monoids are not ${\protect \rm FP}_2$
JO - Comptes Rendus. Mathématique
PY - 2021
SP - 1047
EP - 1057
VL - 359
IS - 8
PB - Académie des sciences, Paris
UR - https://www.numdam.org/articles/10.5802/crmath.247/
DO - 10.5802/crmath.247
LA - en
ID - CRMATH_2021__359_8_1047_0
ER -
%0 Journal Article
%A Gray, Robert D.
%A Steinberg, Benjamin
%T Free inverse monoids are not ${\protect \rm FP}_2$
%J Comptes Rendus. Mathématique
%D 2021
%P 1047-1057
%V 359
%N 8
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.247/
%R 10.5802/crmath.247
%G en
%F CRMATH_2021__359_8_1047_0
Gray, Robert D.; Steinberg, Benjamin. Free inverse monoids are not ${\protect \rm FP}_2$. Comptes Rendus. Mathématique, Tome 359 (2021) no. 8, pp. 1047-1057. doi: 10.5802/crmath.247
[1] Cohomology of groups, Graduate Texts in Mathematics, 87, Springer, 1994
[2] Elementary generalized groups, Mat. Sb., N. Ser., Volume 41 (1957) no. 83, pp. 23-36 | Zbl | MR
[3] A Lyndon’s identity theorem for one-relator monoids (2019) | arXiv
[4] Techniques of semigroup theory, Oxford Science Publications, Oxford University Press, 1992 | Zbl
[5] Fundamentals of semigroup theory, London Mathematical Society Monographs, 12, Clarendon Press, 1995 | Zbl | MR
[6] Relation modules and relation bimodules of groups, semigroups and associative algebras, Int. J. Algebra Comput., Volume 1 (1991) no. 1, pp. 89-114 | MR | DOI
[7] Inverse semigroups. The theory of partial symmetries, World Scientific, 1998 | Zbl
[8] Free inverse semigroups, Proc. Lond. Math. Soc., Volume 29 (1974), pp. 385-404 | MR | DOI
[9] Properties of monoids that are presented by finite convergent string-rewriting systems—a survey, Advances in algorithms, languages, and complexity, Kluwer Academic Publishers, 1997, pp. 225-266 | Zbl | DOI
[10] Inverse semigroups, Pure and Applied Mathematics, John Wiley & Sons, 1984 | Zbl
[11] Homological finiteness conditions for groups, monoids, and algebras, Commun. Algebra, Volume 34 (2006) no. 10, pp. 3525-3536 | Zbl | MR | DOI
[12] Free inverse semigroups, Proc. Am. Math. Soc., Volume 38 (1973), pp. 1-7 | Zbl | MR | DOI
[13] Free inverse semigroups are not finitely presentable, Acta Math. Acad. Sci. Hung., Volume 26 (1975), pp. 41-52 | Zbl | MR | DOI
Cité par Sources :





