In 1999, Brylinski and Zhang computed the complex equivariant K-theory of the conjugation self-action of a compact, connected Lie group with torsion-free fundamental group. In this note we show it is possible to do so in under a page.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.235
Carlson, Jeffrey D. 1
CC-BY 4.0
@article{CRMATH_2021__359_7_795_0,
author = {Carlson, Jeffrey D.},
title = {The {K-theory} of the conjugation action},
journal = {Comptes Rendus. Math\'ematique},
pages = {795--796},
year = {2021},
publisher = {Acad\'emie des sciences, Paris},
volume = {359},
number = {7},
doi = {10.5802/crmath.235},
zbl = {07390661},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.235/}
}
TY - JOUR AU - Carlson, Jeffrey D. TI - The K-theory of the conjugation action JO - Comptes Rendus. Mathématique PY - 2021 SP - 795 EP - 796 VL - 359 IS - 7 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.235/ DO - 10.5802/crmath.235 LA - en ID - CRMATH_2021__359_7_795_0 ER -
Carlson, Jeffrey D. The K-theory of the conjugation action. Comptes Rendus. Mathématique, Tome 359 (2021) no. 7, pp. 795-796. doi: 10.5802/crmath.235
[1] On the -theory of compact Lie groups, Topology, Volume 4 (1965) no. 1, pp. 95-99 | MR | Zbl | DOI
[2] Equivariant -theory of compact connected Lie groups, -Theory, Volume 20 (2000) no. 1, pp. 23-36 | MR | Zbl | DOI
[3] The Real -theory of compact Lie groups, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 10 (2014), 022, 26 pages | MR | Zbl | DOI
[4] On the -theory of Lie groups, Topology, Volume 6 (1967) no. 1, pp. 1-36 | MR | DOI
[5] The equivariant Künneth theorem in -theory, Topics in -theory (Lecture Notes in Mathematics), Volume 496, Springer, 1975, pp. 1-101 | MR | DOI
Cité par Sources :





