Let a reductive group act on a smooth affine complex algebraic variety Let be the Lie algebra of and be the moment map. If the moment map is flat, and for a generic character , the action of on is free, then we show that for very generic characters the corresponding quantum Hamiltonian reduction of the ring of differential operators is simple.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.214
Tikaradze, Akaki 1
CC-BY 4.0
@article{CRMATH_2021__359_6_739_0,
author = {Tikaradze, Akaki},
title = {Generic simplicity of quantum {Hamiltonian} reductions},
journal = {Comptes Rendus. Math\'ematique},
pages = {739--742},
year = {2021},
publisher = {Acad\'emie des sciences, Paris},
volume = {359},
number = {6},
doi = {10.5802/crmath.214},
zbl = {07390655},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.214/}
}
TY - JOUR AU - Tikaradze, Akaki TI - Generic simplicity of quantum Hamiltonian reductions JO - Comptes Rendus. Mathématique PY - 2021 SP - 739 EP - 742 VL - 359 IS - 6 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.214/ DO - 10.5802/crmath.214 LA - en ID - CRMATH_2021__359_6_739_0 ER -
%0 Journal Article %A Tikaradze, Akaki %T Generic simplicity of quantum Hamiltonian reductions %J Comptes Rendus. Mathématique %D 2021 %P 739-742 %V 359 %N 6 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.214/ %R 10.5802/crmath.214 %G en %F CRMATH_2021__359_6_739_0
Tikaradze, Akaki. Generic simplicity of quantum Hamiltonian reductions. Comptes Rendus. Mathématique, Tome 359 (2021) no. 6, pp. 739-742. doi: 10.5802/crmath.214
[1] Cherednik algebras and Hilbert schemes in characteristic , Represent. Theory, Volume 10 (2006), pp. 254-298 | DOI | MR | Zbl
[2] Geometry of the moment map for representations of quivers, Compos. Math., Volume 126 (2001) no. 3, pp. 257-293 | DOI | MR | Zbl
[3] Power reductivity over an arbitrary base of change, Doc. Math., Volume Extra Vol. (2010), pp. 171-195 (Andrei A. Suslin’s Sixtieth Birthday) | Zbl
[4] Completions of symplectic reflection algebras, Sel. Math., New Ser., Volume 18 (2012) no. 1, pp. 179-251 | MR | DOI | Zbl
[5] Ideals in deformation quantizations over , J. Pure Appl. Algebra, Volume 221 (2017) no. 1, pp. 229-236 | MR | DOI | Zbl
Cité par Sources :





