[Intersection algébrique dans la strate des surfaces de translation]
We study a volume related quantity on the stratum of translation surfaces of genus , with one conical point. We provide an explicit sequence of surfaces such that when n goes to infinity, being the conjectured infimum for over .
Nous étudions une quantité liée au volume sur la strate des surfaces de translation de genre , avec une singularité conique. Nous donnons une suite explicite de surfaces telles que quand n tend vers l’infini, étant l’infimum conjectural de sur .
Accepté le :
Publié le :
Cheboui, Smail 1, 2 ; Kessi, Arezki 1 ; Massart, Daniel 2
CC-BY 4.0
@article{CRMATH_2021__359_1_65_0,
author = {Cheboui, Smail and Kessi, Arezki and Massart, Daniel},
title = {Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {65--70},
year = {2021},
publisher = {Acad\'emie des sciences, Paris},
volume = {359},
number = {1},
doi = {10.5802/crmath.153},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.153/}
}
TY - JOUR
AU - Cheboui, Smail
AU - Kessi, Arezki
AU - Massart, Daniel
TI - Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$
JO - Comptes Rendus. Mathématique
PY - 2021
SP - 65
EP - 70
VL - 359
IS - 1
PB - Académie des sciences, Paris
UR - https://www.numdam.org/articles/10.5802/crmath.153/
DO - 10.5802/crmath.153
LA - en
ID - CRMATH_2021__359_1_65_0
ER -
%0 Journal Article
%A Cheboui, Smail
%A Kessi, Arezki
%A Massart, Daniel
%T Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$
%J Comptes Rendus. Mathématique
%D 2021
%P 65-70
%V 359
%N 1
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.153/
%R 10.5802/crmath.153
%G en
%F CRMATH_2021__359_1_65_0
Cheboui, Smail; Kessi, Arezki; Massart, Daniel. Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$. Comptes Rendus. Mathématique, Tome 359 (2021) no. 1, pp. 65-70. doi: 10.5802/crmath.153
[1] Algebraic intersection for translation surfaces in the Teichmüller disk of (https://arxiv.org/abs/2007.10847)
[2] Systolic geometry of translation surfaces (2018) (https://arxiv.org/abs/1809.10327v1)
[3] Prime arithmetic Teichmüller discs in , Isr. J. Math., Volume 151 (2006), pp. 281-321 | DOI | Zbl
[4] The maximum number of systoles for genus two Riemann surfaces with abelian differentials, Comment. Math. Helv., Volume 94 (2019) no. 2, pp. 399-437 | Zbl | MR | DOI
[5] On the intersection form of surfaces, Manuscr. Math., Volume 143 (2014) no. 1-2, pp. 19-49 | Zbl | MR | DOI
[6] Teichmüller curves in genus two: discriminant and spin, Math. Ann., Volume 333 (2005) no. 1, pp. 87-130 | DOI | Zbl
[7] An algorithm for finding the Veech group of an origami, Exp. Math., Volume 13 (2004) no. 4, pp. 459-472 | MR | DOI | Zbl
Cité par Sources :





