Théorie des nombres
A short proof of the canonical polynomial van der Waerden theorem
[Une démonstration courte du théorème de van der Waerden polynomial canonique]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 957-959

We present a short new proof of the canonical polynomial van der Waerden theorem, recently established by Girão.

Nous présentons une nouvelle démonstration courte du théorème de van der Waerden polynomial canonique, récemment établi par Girão.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.101
Classification : 05D10, 11B30

Fox, Jacob 1 ; Wigderson, Yuval 1 ; Zhao, Yufei 2

1 Department of Mathematics, Stanford University, Stanford, CA, USA
2 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_8_957_0,
     author = {Fox, Jacob and Wigderson, Yuval and Zhao, Yufei},
     title = {A short proof of the canonical polynomial van der {Waerden} theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {957--959},
     year = {2020},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {8},
     doi = {10.5802/crmath.101},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.101/}
}
TY  - JOUR
AU  - Fox, Jacob
AU  - Wigderson, Yuval
AU  - Zhao, Yufei
TI  - A short proof of the canonical polynomial van der Waerden theorem
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 957
EP  - 959
VL  - 358
IS  - 8
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.101/
DO  - 10.5802/crmath.101
LA  - en
ID  - CRMATH_2020__358_8_957_0
ER  - 
%0 Journal Article
%A Fox, Jacob
%A Wigderson, Yuval
%A Zhao, Yufei
%T A short proof of the canonical polynomial van der Waerden theorem
%J Comptes Rendus. Mathématique
%D 2020
%P 957-959
%V 358
%N 8
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.101/
%R 10.5802/crmath.101
%G en
%F CRMATH_2020__358_8_957_0
Fox, Jacob; Wigderson, Yuval; Zhao, Yufei. A short proof of the canonical polynomial van der Waerden theorem. Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 957-959. doi: 10.5802/crmath.101

[1] Bergelson, Vitaly; Leibman, Alexander Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Am. Math. Soc., Volume 9 (1996) no. 3, pp. 725-753 | Zbl | MR | DOI

[2] Erdős, Pál; Graham, Ronald L. Old and new problems and results in combinatorial number theory, Monographies de l’Enseignement Mathématique, 28, L’Enseignement Mathématique, 1980, 128 pages | Zbl | MR

[3] Erdős, Pál; Rado, Richard A combinatorial theorem, J. Lond. Math. Soc., Volume 25 (1950), pp. 249-255 | Zbl | MR | DOI

[4] Girão, António A canonical polynomial van der Waerden’s theorem (https://arxiv.org/abs/2004.07766) | Zbl

[5] Hua, Loo Keng Introduction to number theory, Springer, 1982 | Zbl | MR

[6] Linnik, Yuriĭ V. An elementary solution of the problem of Waring by Schnirelman’s method, Mat. Sb., N. Ser., Volume 12(54) (1943), pp. 225-230 | Zbl | MR

[7] Szemerédi, Endre On sets of integers containing no k elements in arithmetic progression, Acta Arith., Volume 27 (1975), pp. 199-245 | Zbl | MR | DOI

Cité par Sources :