[Une démonstration courte du théorème de van der Waerden polynomial canonique]
We present a short new proof of the canonical polynomial van der Waerden theorem, recently established by Girão.
Nous présentons une nouvelle démonstration courte du théorème de van der Waerden polynomial canonique, récemment établi par Girão.
Révisé le :
Accepté le :
Publié le :
Fox, Jacob 1 ; Wigderson, Yuval 1 ; Zhao, Yufei 2
CC-BY 4.0
@article{CRMATH_2020__358_8_957_0,
author = {Fox, Jacob and Wigderson, Yuval and Zhao, Yufei},
title = {A short proof of the canonical polynomial van der {Waerden} theorem},
journal = {Comptes Rendus. Math\'ematique},
pages = {957--959},
year = {2020},
publisher = {Acad\'emie des sciences, Paris},
volume = {358},
number = {8},
doi = {10.5802/crmath.101},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.101/}
}
TY - JOUR AU - Fox, Jacob AU - Wigderson, Yuval AU - Zhao, Yufei TI - A short proof of the canonical polynomial van der Waerden theorem JO - Comptes Rendus. Mathématique PY - 2020 SP - 957 EP - 959 VL - 358 IS - 8 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.101/ DO - 10.5802/crmath.101 LA - en ID - CRMATH_2020__358_8_957_0 ER -
%0 Journal Article %A Fox, Jacob %A Wigderson, Yuval %A Zhao, Yufei %T A short proof of the canonical polynomial van der Waerden theorem %J Comptes Rendus. Mathématique %D 2020 %P 957-959 %V 358 %N 8 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.101/ %R 10.5802/crmath.101 %G en %F CRMATH_2020__358_8_957_0
Fox, Jacob; Wigderson, Yuval; Zhao, Yufei. A short proof of the canonical polynomial van der Waerden theorem. Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 957-959. doi: 10.5802/crmath.101
[1] Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Am. Math. Soc., Volume 9 (1996) no. 3, pp. 725-753 | Zbl | MR | DOI
[2] Old and new problems and results in combinatorial number theory, Monographies de l’Enseignement Mathématique, 28, L’Enseignement Mathématique, 1980, 128 pages | Zbl | MR
[3] A combinatorial theorem, J. Lond. Math. Soc., Volume 25 (1950), pp. 249-255 | Zbl | MR | DOI
[4] A canonical polynomial van der Waerden’s theorem (https://arxiv.org/abs/2004.07766) | Zbl
[5] Introduction to number theory, Springer, 1982 | Zbl | MR
[6] An elementary solution of the problem of Waring by Schnirelman’s method, Mat. Sb., N. Ser., Volume 12(54) (1943), pp. 225-230 | Zbl | MR
[7] On sets of integers containing no elements in arithmetic progression, Acta Arith., Volume 27 (1975), pp. 199-245 | Zbl | MR | DOI
Cité par Sources :





