Convexity, plurisubharmonicity and the strong maximum modulus principle in Banach spaces
Confluentes Mathematici, Tome 15 (2023), pp. 83-106

In this article, we first try to make the known analogy between convexity and plurisubharmonicity more precise. Then we introduce a notion of strict plurisubharmonicity analogous to strict convexity, and we show how this notion can be used to study the strong maximum modulus principle in Banach spaces. As an application, we define a notion of L p direct integral of a family of Banach spaces, which includes at once Bochner L p spaces, p direct sums and Hilbert direct integrals, and we show that under suitable hypotheses, when p<, an L p direct integral satisfies the strong maximum modulus principle if and only if almost all members of the family do. This statement can be considered as a rewording of several known results, but the notion of strict plurisubharmonicity yields a new proof of it, which has the advantage of being short, enlightening and unified.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/cml.93
Classification : 32U05, 46B20, 46E30
Keywords: convexity, plurisubharmonicity, strong maximum modulus principle, Banach spaces, direct integrals

Wilke, Anne-Edgar 1

1 Univ. Bordeaux, CNRS, INRIA, Bordeaux INP, IMB, UMR 5251, F-33400 Talence, France
Licence : CC-BY-NC-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CML_2023__15__83_0,
     author = {Wilke, Anne-Edgar},
     title = {Convexity, plurisubharmonicity and the strong maximum modulus principle in {Banach} spaces},
     journal = {Confluentes Mathematici},
     pages = {83--106},
     year = {2023},
     publisher = {Institut Camille Jordan},
     volume = {15},
     doi = {10.5802/cml.93},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/cml.93/}
}
TY  - JOUR
AU  - Wilke, Anne-Edgar
TI  - Convexity, plurisubharmonicity and the strong maximum modulus principle in Banach spaces
JO  - Confluentes Mathematici
PY  - 2023
SP  - 83
EP  - 106
VL  - 15
PB  - Institut Camille Jordan
UR  - https://www.numdam.org/articles/10.5802/cml.93/
DO  - 10.5802/cml.93
LA  - en
ID  - CML_2023__15__83_0
ER  - 
%0 Journal Article
%A Wilke, Anne-Edgar
%T Convexity, plurisubharmonicity and the strong maximum modulus principle in Banach spaces
%J Confluentes Mathematici
%D 2023
%P 83-106
%V 15
%I Institut Camille Jordan
%U https://www.numdam.org/articles/10.5802/cml.93/
%R 10.5802/cml.93
%G en
%F CML_2023__15__83_0
Wilke, Anne-Edgar. Convexity, plurisubharmonicity and the strong maximum modulus principle in Banach spaces. Confluentes Mathematici, Tome 15 (2023), pp. 83-106. doi: 10.5802/cml.93

[1] Bourbaki, Nicolas Variétés différentielles et analytiques (Fascicule de résultats). Paragraphes 1 à 7, Actualités Scientifiques et Industrielles, 1333, Hermann, 1967 | DOI | Zbl

[2] Bourbaki, Nicolas Topologie générale. Chapitres 5 à 10, Hermann, 1974 | DOI | Zbl

[3] Bourbaki, Nicolas Espaces vectoriels topologiques. Chapitres 1 à 5, Masson, 1981 | DOI | Zbl

[4] Bremermann, Hans-Joachim Complex convexity, Trans. Am. Math. Soc., Volume 82 (1956), pp. 17-51 | DOI | Zbl | MR

[5] Carmignani, Robert Strict complex convexity, Proc. Am. Math. Soc., Volume 57 (2041) no. 2, pp. 285-290 | DOI | Zbl | MR

[6] Cohn, Donald L. Measure theory, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser/Springer, 2013 | DOI | Zbl | MR

[7] Day, Mahlon M. Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. Am. Math. Soc., Volume 47 (1941) no. 4, pp. 313-317 | DOI | Zbl | MR

[8] Day, Mahlon M. Strict convexity and smoothness of normed spaces, Trans. Am. Math. Soc., Volume 78 (1955), pp. 516-528 | DOI | Zbl | MR

[9] de Jeu, Marcel; Rozendaal, Jan Disintegration of positive isometric group representations on L p -spaces, Positivity, Volume 21 (2017) no. 2, pp. 673-710 | DOI | Zbl | MR

[10] Diestel, Joseph; Uhl, John Jerry Vector measures, Mathematical Surveys, 15, American Mathematical Society, 1977 | DOI | Zbl

[11] Dilworth, Stephen J. Complex convexity and the geometry of Banach spaces, Math. Proc. Camb. Philos. Soc., Volume 99 (1986) no. 3, pp. 495-506 | DOI | Zbl | MR

[12] Douady, Adrien Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné, Ann. Inst. Fourier, Volume 16 (1966) no. 1, pp. 1-95 | DOI | Zbl | Numdam

[13] Federer, Herbert Geometric measure theory, Grundlehren der Mathematischen Wissenschaften, 153, Springer, 2010 | DOI | Zbl

[14] Globevnik, Josip On complex strict and uniform convexity, Proc. Am. Math. Soc., Volume 47 (2040) no. 1, 10.2307/2040227 pages | Zbl | DOI | MR

[15] Haydon, Richard G.; Levy, Mireille F.; Raynaud, Yves Randomly normed spaces, Travaux en Cours, 41, Hermann, 1991 | Zbl

[16] Hörmander, Lars Notions of convexity, Progress in Mathematics, 127, Birkhäuser, 1994 | DOI | Zbl

[17] Hytönen, Tuomas; van Neerven, Jan; Veraar, Mark; Weis, Lutz Analysis in Banach spaces. Vol. I. Martingales and Littlewood-Paley theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 63, Springer, 2016 | DOI | Zbl

[18] Istrăţescu, Vasile I.; Istrăţescu, Ioana On complex strictly convex spaces. I, J. Math. Anal. Appl., Volume 70 (1979) no. 2, pp. 423-429 | DOI | Zbl | MR

[19] Jamison, James E.; Loomis, Irene H.; Rousseau, Cecil C. Complex strict convexity of certain Banach spaces, Monatsh. Math., Volume 99 (1985) no. 3, pp. 199-211 | DOI | Zbl | MR

[20] Lelong, Pierre Les fonctions plurisousharmoniques, Ann. Sci. Éc. Norm. Supér., Volume 62 (1945) no. 4, pp. 301-338 | DOI | Zbl | MR | Numdam

[21] Lelong, Pierre Fonctions plurisousharmoniques dans les espaces vectoriels topologiques, Séminaire Pierre Lelong (Analyse). Année 1967-1968 (Lecture Notes in Mathematics), Volume 71, Springer, 1967, pp. 167-190 | DOI | Zbl

[22] Mackey, George W. Induced representations of locally compact groups. I, Ann. Math., Volume 55 (1952), pp. 101-139 | DOI | Zbl | MR

[23] Nielsen, Ole A. Direct integral theory, Lecture Notes in Pure and Applied Mathematics, 61, Marcel Dekker, 1980 | DOI | Zbl | MR

[24] Oka, Kiyosi Sur les fonctions analytiques de plusieurs variables. VI. Domaines pseudoconvexes, Tôhoku Math. J., Volume 49 (1942), pp. 15-52 | Zbl | MR

[25] Thorp, Edward O.; Whitley, Robert J. The strong maximum modulus theorem for analytic functions into a Banach space, Proc. Am. Math. Soc., Volume 18 (2035) no. 4, pp. 640-646 | DOI | Zbl | MR

Cité par Sources :