[Coordonnées locales pour la variété des -caractères des 3-variétés hyperboliques à volume fini]
Given a finite-volume hyperbolic 3-manifold, we compose a lift of the holonomy in with the -dimensional irreducible representation of in . In this paper we give local coordinates of the -character variety around the character of this representation. As a corollary, this representation is isolated among all representations that are unipotent at the cusps.
Étant donnée une 3-variété hyperbolique à volume fini, on compose un relevé dans de son holnomie avec la représentation irreductible et -dimensionnelle de dans . Dans cet article on donne des coordonnées locales autour du caractère de cette représentation. Comme corollaire, cette representation est isolée parmi toutes les représentations qui sont unipotentes aux bouts.
Keywords: Infinitesimal Rigidity, Character Variety, Hyperbolic 3-Manifold, L2-Cohomology
Mots-clés : rigidité infinitesimale, variété des caractères, 3-variété hyperbolique, cohomolgie L2
Menal-Ferrer, Pere 1 ; Porti, Joan 1
@article{AMBP_2012__19_1_107_0,
author = {Menal-Ferrer, Pere and Porti, Joan},
title = {Local coordinates for $\operatorname{SL}(n,\mathbf{C})$-character varieties of finite-volume hyperbolic 3-manifolds},
journal = {Annales math\'ematiques Blaise Pascal},
pages = {107--122},
year = {2012},
publisher = {Annales math\'ematiques Blaise Pascal},
volume = {19},
number = {1},
doi = {10.5802/ambp.306},
zbl = {1252.53053},
mrnumber = {2978315},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ambp.306/}
}
TY - JOUR
AU - Menal-Ferrer, Pere
AU - Porti, Joan
TI - Local coordinates for $\operatorname{SL}(n,\mathbf{C})$-character varieties of finite-volume hyperbolic 3-manifolds
JO - Annales mathématiques Blaise Pascal
PY - 2012
SP - 107
EP - 122
VL - 19
IS - 1
PB - Annales mathématiques Blaise Pascal
UR - https://www.numdam.org/articles/10.5802/ambp.306/
DO - 10.5802/ambp.306
LA - en
ID - AMBP_2012__19_1_107_0
ER -
%0 Journal Article
%A Menal-Ferrer, Pere
%A Porti, Joan
%T Local coordinates for $\operatorname{SL}(n,\mathbf{C})$-character varieties of finite-volume hyperbolic 3-manifolds
%J Annales mathématiques Blaise Pascal
%D 2012
%P 107-122
%V 19
%N 1
%I Annales mathématiques Blaise Pascal
%U https://www.numdam.org/articles/10.5802/ambp.306/
%R 10.5802/ambp.306
%G en
%F AMBP_2012__19_1_107_0
Menal-Ferrer, Pere; Porti, Joan. Local coordinates for $\operatorname{SL}(n,\mathbf{C})$-character varieties of finite-volume hyperbolic 3-manifolds. Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 1, pp. 107-122. doi: 10.5802/ambp.306
[1] Topics in conformally compact Einstein metrics, Perspectives in Riemannian geometry (CRM Proc. Lecture Notes), Volume 40, Amer. Math. Soc., Providence, RI, 2006, pp. 1-26 | MR
[2] Rigidity of geometrically finite hyperbolic cone-manifolds, Geom. Dedicata, Volume 105 (2004), pp. 143-170 | DOI | MR
[3] Hyperbolic manifolds and discrete groups, Progress in Mathematics, 183, Birkhäuser Boston Inc., Boston, MA, 2001 | MR
[4] Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc., Volume 58 (1985) no. 336, pp. xi+117 | Zbl | MR
[5] On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, Ann. of Math. (2), Volume 78 (1963), pp. 365-416 | DOI | Zbl | MR
[6] Twisted cohomology for hyperbolic three manifolds, to appear in Osaka J. Math. (2012), arXiv:1001.2242
[7] On the first cohomology of discrete subgroups of semisimple Lie groups, Amer. J. Math., Volume 87 (1965), pp. 103-139 | DOI | Zbl | MR
[8] Remarks on the cohomology of groups, Ann. of Math. (2), Volume 80 (1964), pp. 149-157 | DOI | Zbl | MR
[9] Local rigidity of 3-dimensional cone-manifolds, J. Differential Geom., Volume 71 (2005) no. 3, pp. 437-506 | MR
Cité par Sources :






