Let be a locally compact group and the left Haar measure on . Given a non-negative Radon measure , we establish a necessary condition on the pairs for which is a multiplier from to . Applied to , our result is stronger than the necessary condition established by Oberlin in [14] and is closely related to a class of measures defined by Fofana in [7].
When is the circle group, we obtain a generalization of a condition stated by Oberlin [15] and improve on it in some cases.
Soit un groupe localement compact et la mesure de Haar à gauche sur . Etant donné une mesure de Radon positive , nous établissons une condition nécessaire sur les couples pour lesquels est un multiplicateur de dans . Appliqué à , notre résultat est plus fort que la condition nécessaire établie par Oberlin dans [14] et est très lié à une classe de mesures définie par Fofana dans [7].
Lorsque est le tore, nous obtenons une généralisation d’une condition énoncée par Oberlin [15] et l’améliorons dans certains cas.
Keywords: Cantor-Lebesgue measure, $L^{q}$-improving measure, non-negative Radon measure
Mots-clés : Mesure de Cantor-Lebesgue, mesure $L^{q}$-improving, mesure de Radon positive
Kpata, Bérenger Akon 1 ; Fofana, Ibrahim 1 ; Koua, Konin 1
@article{AMBP_2009__16_2_339_0,
author = {Kpata, B\'erenger Akon and Fofana, Ibrahim and Koua, Konin},
title = {Necessary condition for measures which are $(L^{q},L^{p})$ multipliers},
journal = {Annales math\'ematiques Blaise Pascal},
pages = {339--353},
year = {2009},
publisher = {Annales math\'ematiques Blaise Pascal},
volume = {16},
number = {2},
doi = {10.5802/ambp.271},
zbl = {1178.43001},
mrnumber = {2568870},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ambp.271/}
}
TY - JOUR
AU - Kpata, Bérenger Akon
AU - Fofana, Ibrahim
AU - Koua, Konin
TI - Necessary condition for measures which are $(L^{q},L^{p})$ multipliers
JO - Annales mathématiques Blaise Pascal
PY - 2009
SP - 339
EP - 353
VL - 16
IS - 2
PB - Annales mathématiques Blaise Pascal
UR - https://www.numdam.org/articles/10.5802/ambp.271/
DO - 10.5802/ambp.271
LA - en
ID - AMBP_2009__16_2_339_0
ER -
%0 Journal Article
%A Kpata, Bérenger Akon
%A Fofana, Ibrahim
%A Koua, Konin
%T Necessary condition for measures which are $(L^{q},L^{p})$ multipliers
%J Annales mathématiques Blaise Pascal
%D 2009
%P 339-353
%V 16
%N 2
%I Annales mathématiques Blaise Pascal
%U https://www.numdam.org/articles/10.5802/ambp.271/
%R 10.5802/ambp.271
%G en
%F AMBP_2009__16_2_339_0
Kpata, Bérenger Akon; Fofana, Ibrahim; Koua, Konin. Necessary condition for measures which are $(L^{q},L^{p})$ multipliers. Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 2, pp. 339-353. doi: 10.5802/ambp.271
[1] Convolution inequalities on the circle, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) (Wadsworth Math. Ser.), Wadsworth, Belmont, CA, 1983, pp. 32-43 | MR
[2] Étude des coefficients de Fourier des fonctions de , Ann. Inst. Fourier (Grenoble), Volume 20 (1970), pp. 335-402 | DOI | Zbl | MR | Numdam
[3] A convolution inequality concerning Cantor-Lebesgue measures, Revista Mat. Iberoamericana, Volume vol. 1, n. ∘ 4 (1985), pp. 79-83 | Zbl | MR
[4] The geometry of fractal sets, Cambridge University Press, London/New York, 1985 | Zbl | MR
[5] Fractal geometry, Wiley, New York, 1990 | Zbl | MR
[6] Continuité de l’intégrale fractionnaire et espaces , C. R. A. S. Paris, Volume t. 308, série I (1989), pp. 525-527 | Zbl | MR
[7] Transformation de Fourier dans et , Afrika matematika, Volume série 3, vol. 5 (1995), pp. 53-76 | Zbl | MR
[8] Espaces et Continuité de l’opérateur maximal fractionnaire de Hardy-Littlewood, Afrika matematika, Volume série 3, vol. 12 (2001), pp. 23-37 | Zbl | MR
[9] The size of -improving measures, J. Funct. Anal., Volume 84 (1989), pp. 472-495 | DOI | Zbl | MR
[10] An introduction to the theory of multipliers, Springer-Verlag, Berlin, Heidelberg, New York, 1971 | Zbl | MR
[11] Fractal Measures and Mean -Variations, J. Funct. Anal., Volume 108 (1992), pp. 427-457 | DOI | Zbl | MR
[12] A convolution property of the Cantor-Lebesgue measure, Colloq. Math., Volume 47 (1982), pp. 113-117 | Zbl | MR
[13] Convolution with measure on hypersurfaces, Math. Proc. Camb. Phil. Soc., Volume 129 (2000), pp. 517-526 | DOI | Zbl | MR
[14] Affine dimension : measuring the vestiges of curvature, Michigan Math. J., Volume 51 (2003), pp. 13-26 | DOI | Zbl | MR
[15] A convolution property of the Cantor-Lebesgue measure II, Colloq. Math., Volume 97 (2003) no. 1, pp. 23-28 | DOI | Zbl | MR
[16] Most Riesz product measures are -improving, Proc. Amer. Math. Soc., Volume 97 (1986), pp. 291-295 | Zbl | MR
[17] Some singular measures on the circle which improve spaces, Colloq. Math., Volume 52 (1987), pp. 133-144 | Zbl | MR
[18] Harmonic Analysis on , 13, Studies in Harmonic Analysis, MAA Studies in Mathematics (1976), pp. 97-135 (Mathematical Association of America, Washington, D. C.) | Zbl | MR
[19] Trigonometric series. 2nd ed. Vol. I, Cambridge University Press, New York, 1959 | Zbl | MR
Cité par Sources :





