We study the existence and the regularity of the local time of filtered white noises . We will also give Chung’s form of the law of iterated logarithm for , this shows that the result on the Hölder regularity, with respect to time, of the local time is sharp.
Keywords: Local time, Local nondeterminism, Chung’s type law of iterated logarithm, Filtered white noises.
Guerbaz, Raby 1
@article{AMBP_2007__14_1_77_0,
author = {Guerbaz, Raby},
title = {Local time and related sample paths of filtered white noises},
journal = {Annales math\'ematiques Blaise Pascal},
pages = {77--91},
year = {2007},
publisher = {Annales math\'ematiques Blaise Pascal},
volume = {14},
number = {1},
doi = {10.5802/ambp.228},
zbl = {1144.60029},
mrnumber = {2298805},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ambp.228/}
}
TY - JOUR AU - Guerbaz, Raby TI - Local time and related sample paths of filtered white noises JO - Annales mathématiques Blaise Pascal PY - 2007 SP - 77 EP - 91 VL - 14 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://www.numdam.org/articles/10.5802/ambp.228/ DO - 10.5802/ambp.228 LA - en ID - AMBP_2007__14_1_77_0 ER -
%0 Journal Article %A Guerbaz, Raby %T Local time and related sample paths of filtered white noises %J Annales mathématiques Blaise Pascal %D 2007 %P 77-91 %V 14 %N 1 %I Annales mathématiques Blaise Pascal %U https://www.numdam.org/articles/10.5802/ambp.228/ %R 10.5802/ambp.228 %G en %F AMBP_2007__14_1_77_0
Guerbaz, Raby. Local time and related sample paths of filtered white noises. Annales mathématiques Blaise Pascal, Tome 14 (2007) no. 1, pp. 77-91. doi: 10.5802/ambp.228
[1] Geometry of random fields, Wily, New York, 1980 | Zbl | MR
[2] Local self similarity and Hausdorff dimension, C.R.A.S., Volume Série I, tome 336 (2003), pp. 267-272 | Zbl | MR
[3] Identification of filtered white noises, Stochastic Processes and their Applications, Volume 75 (1998), pp. 31-49 | DOI | Zbl | MR
[4] Gaussian processes with stationary increments: Local times and sample function properties, Ann. Math. Statist., Volume 41 (1970), pp. 1260-1272 | DOI | Zbl | MR
[5] Gaussian sample functions: uniform dimension and Hölder conditions nowhere, Nagoya Math. J., Volume 46 (1972), pp. 63-86 | Zbl | MR
[6] Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J., Volume 23 (1973), pp. 69-94 | DOI | Zbl | MR
[7] On the local time of the multifractional Brownian motion, Stochastics and stochastic repports, Volume 78 (33-49), pp. 2006 | Zbl | MR
[8] Sample function properties of multi-parameter stable processes, Z. Wahrsch. verw. Gebiete, Volume 56 (195-228), pp. 1981 | Zbl | MR
[9] Occupation densities, Ann. of Probab., Volume 8 (1980), pp. 1 -67 | DOI | Zbl | MR
[10] Gaussian Processes : Inequalities, Small Ball Probabilities and Applications, Stochastic Processes: Theory and methods. Handbook of Statistics, Volume 19, Edited by C.R. Rao and D. Shanbhag Elsevier, New York, 2001, pp. 533-598 | Zbl | MR
[11] Small values of Gaussian processes and functional laws of the iterated logarithm, Probab. Th. Rel. Fields, Volume 101 (1995), pp. 173-192 | DOI | Zbl | MR
[12] Local times for Gaussian vector fields, Indiana Univ. Math. J., Volume 27 (1978), pp. 309-330 | DOI | Zbl | MR
[13] Evolutionary spectra and non stationary processes, J. Roy. Statist. Soc., Volume B 27 (1965), pp. 204-237 | Zbl | MR
[14] Strong local nondeterminism and the sample path properties of Gaussian random fields (2005) (Preprint)
Cité par Sources :





