For a finite group with integer-valued character table and a prime , we show that almost every entry in the character table of is divisible by as . This result generalizes the work of Peluse and Soundararajan on the character table of .
Révisé le :
Accepté le :
Publié le :
Dong, Brandon 1 ; Graff, Hannah 2 ; Mundinger, Joshua 3 ; Rothstein, Skye 4 ; Vescovo, Lola 5
CC-BY 4.0
@article{ALCO_2023__6_6_1519_0,
author = {Dong, Brandon and Graff, Hannah and Mundinger, Joshua and Rothstein, Skye and Vescovo, Lola},
title = {Almost all wreath product character values are divisible by given primes},
journal = {Algebraic Combinatorics},
pages = {1519--1531},
year = {2023},
publisher = {The Combinatorics Consortium},
volume = {6},
number = {6},
doi = {10.5802/alco.313},
language = {en},
url = {https://www.numdam.org/articles/10.5802/alco.313/}
}
TY - JOUR AU - Dong, Brandon AU - Graff, Hannah AU - Mundinger, Joshua AU - Rothstein, Skye AU - Vescovo, Lola TI - Almost all wreath product character values are divisible by given primes JO - Algebraic Combinatorics PY - 2023 SP - 1519 EP - 1531 VL - 6 IS - 6 PB - The Combinatorics Consortium UR - https://www.numdam.org/articles/10.5802/alco.313/ DO - 10.5802/alco.313 LA - en ID - ALCO_2023__6_6_1519_0 ER -
%0 Journal Article %A Dong, Brandon %A Graff, Hannah %A Mundinger, Joshua %A Rothstein, Skye %A Vescovo, Lola %T Almost all wreath product character values are divisible by given primes %J Algebraic Combinatorics %D 2023 %P 1519-1531 %V 6 %N 6 %I The Combinatorics Consortium %U https://www.numdam.org/articles/10.5802/alco.313/ %R 10.5802/alco.313 %G en %F ALCO_2023__6_6_1519_0
Dong, Brandon; Graff, Hannah; Mundinger, Joshua; Rothstein, Skye; Vescovo, Lola. Almost all wreath product character values are divisible by given primes. Algebraic Combinatorics, Tome 6 (2023) no. 6, pp. 1519-1531. doi: 10.5802/alco.313
[1] Über die Charaktere der symmetrischen Gruppe, Sitzungsberichte der Königliche Akademie der Wissenschaften (1900), pp. 516-534 | Zbl
[2] Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs, New Series, Oxford University Press, 2000 no. 21 | DOI
[3] Asymptotic Formulæ in Combinatory Analysis, Proc. London Math. Soc. (2), Volume 17 (1918), pp. 75-115 | DOI | Zbl
[4] The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, Addison-Wesley, 1981 no. 16
[5] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford University Press, 1995 | DOI
[6] Congruences in character tables of symmetric groups, 2019 | arXiv | DOI
[7] On parity and characters of symmetric groups, J. Combin. Theory Ser. A, Volume 162 (2019), pp. 231-240 | DOI | MR | Zbl
[8] Almost all entries in the character table of the symmetric group are multiples of any given prime, J. Reine Angew. Math., Volume 786 (2022), pp. 45-53 | DOI | MR | Zbl
[9] The partition function revisited, The legacy of Srinivasa Ramanujan (Lect. Notes Ser.), Volume 20, Ramanujan Math. Soc. (2013), pp. 261-279 | MR | Zbl
[10] Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, 1977 | DOI
[11] Eine Verallgemeinerung der symmetrischen Gruppe, Ph. D. Thesis, Humboldt-Universität zu Berlin (1932)
[12] On quantitative substitutional analysis (fifth paper), Proc. London Math. Soc. (2), Volume 31 (1930) no. 4, pp. 273-288 | DOI | MR | Zbl
[13] Representations of finite classical groups. A Hopf algebra approach, Lecture Notes in Mathematics, 869, Springer-Verlag, 1981 | MR
Cité par Sources :





