Let be a rational prime. We show that an analogue of a conjecture of Greenberg in graph theory holds true. More precisely, we show that when is sufficiently large, the -adic valuation of the number of spanning trees at the th layer of a -tower of graphs is given by a polynomial in and with rational coefficients of total degree at most and of degree in at most one.
Révisé le :
Accepté le :
Publié le :
Keywords: Ihara zeta functions, Iwasawa theory, spanning trees
DuBose, Sage 1 ; Vallières, Daniel 1
CC-BY 4.0
@article{ALCO_2023__6_5_1331_0,
author = {DuBose, Sage and Valli\`eres, Daniel},
title = {On $\mathbb{Z}_{\ell }^{d}$-towers of graphs},
journal = {Algebraic Combinatorics},
pages = {1331--1346},
year = {2023},
publisher = {The Combinatorics Consortium},
volume = {6},
number = {5},
doi = {10.5802/alco.304},
language = {en},
url = {https://www.numdam.org/articles/10.5802/alco.304/}
}
TY - JOUR
AU - DuBose, Sage
AU - Vallières, Daniel
TI - On $\mathbb{Z}_{\ell }^{d}$-towers of graphs
JO - Algebraic Combinatorics
PY - 2023
SP - 1331
EP - 1346
VL - 6
IS - 5
PB - The Combinatorics Consortium
UR - https://www.numdam.org/articles/10.5802/alco.304/
DO - 10.5802/alco.304
LA - en
ID - ALCO_2023__6_5_1331_0
ER -
DuBose, Sage; Vallières, Daniel. On $\mathbb{Z}_{\ell }^{d}$-towers of graphs. Algebraic Combinatorics, Tome 6 (2023) no. 5, pp. 1331-1346. doi: 10.5802/alco.304
[1] Class numbers in -extensions, Math. Ann., Volume 255 (1981) no. 2, pp. 235-258 | DOI | MR | Zbl
[2] On geometric -extensions of function fields, Manuscripta Math., Volume 62 (1988) no. 2, pp. 145-161 | DOI | MR | Zbl
[3] Jacobians of Finite and Infinite Voltage Covers of Graphs. Thesis (Ph.D.)–The University of Vermont and State Agricultural College, ProQuest LLC, Ann Arbor, MI, 2021, 266 pages | MR
[4] Iwasawa theory of Jacobians of graphs, Algebr. Comb., Volume 5 (2022) no. 5, pp. 827-848 | MR | Zbl
[5] Generating all graph coverings by permutation voltage assignments, Discrete Math., Volume 18 (1977) no. 3, pp. 273-283 | DOI | MR | Zbl
[6] Topological graph theory, Dover Publications, Inc., Mineola, NY, 2001, xvi+361 pages | MR
[7] On zeta and -functions of finite graphs, Internat. J. Math., Volume 1 (1990) no. 4, pp. 381-396 | DOI | MR | Zbl
[8] On discrete subgroups of the two by two projective linear group over -adic fields, J. Math. Soc. Japan, Volume 18 (1966), pp. 219-235 | DOI | MR | Zbl
[9] On -extensions of algebraic number fields, Ann. of Math. (2), Volume 98 (1973), pp. 246-326 | DOI | MR | Zbl
[10] Generalised Iwasawa invariants and the growth of class numbers, Forum Math., Volume 33 (2021) no. 1, pp. 109-127 | DOI | MR | Zbl
[11] The non--part of the number of spanning trees in abelian -towers of multigraphs, Res. Number Theory, Volume 9 (2023) no. 1, 18, 16 pages | DOI | MR | Zbl
[12] On abelian -towers of multigraphs II, Ann. Math. Qué., Volume 47 (2023) no. 2, pp. 461-473 | DOI | MR | Zbl
[13] On abelian -towers of multigraphs III, To appear in Annales Mathématiques du Québec (2022)
[14] On -adic power series, Math. Ann., Volume 255 (1981) no. 2, pp. 217-227 | DOI | MR | Zbl
[15] Class numbers in -extensions. II, Math. Z., Volume 191 (1986) no. 3, pp. 377-395 | DOI | MR
[16] Class numbers in -extensions. III, Math. Z., Volume 193 (1986) no. 4, pp. 491-514 | DOI | MR | Zbl
[17] Class numbers in -extensions. IV, Math. Z., Volume 196 (1987) no. 4, pp. 547-572 | DOI | MR | Zbl
[18] Fine estimates for the growth of in -extensions, Algebraic number theory (Adv. Stud. Pure Math.), Volume 17, Academic Press, Boston, MA, 1989, pp. 309-330 | DOI | MR
[19] Algebraic number theory. Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder, Grundlehren der Mathematischen Wissenschaften, 322, Springer-Verlag, Berlin, 1999, xviii+571 pages | DOI | MR
[20] Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer-Verlag, Berlin, 2008, xvi+825 pages | MR | DOI
[21] A note on the zeta function of a graph, J. Combin. Theory Ser. B, Volume 74 (1998) no. 2, pp. 408-410 | DOI | MR | Zbl
[22] Arbres, amalgames, . Avec un sommaire anglais, Rédigé avec la collaboration de Hyman Bass, Astérisque, 46, Société Mathématique de France, Paris, 1977, 189 pp. (1 plate) pages | MR
[23] Zeta functions of finite graphs and coverings, Adv. Math., Volume 121 (1996) no. 1, pp. 124-165 | DOI | MR | Zbl
[24] Zeta functions of finite graphs and coverings. II, Adv. Math., Volume 154 (2000) no. 1, pp. 132-195 | DOI | MR | Zbl
[25] -functions in geometry and some applications, Curvature and topology of Riemannian manifolds (Katata, 1985) (Lecture Notes in Math.), Volume 1201, Springer, Berlin, 1986, pp. 266-284 | DOI | MR | Zbl
[26] Topological crystallography.With a view towards discrete geometric analysis, Surveys and Tutorials in the Applied Mathematical Sciences, 6, Springer, Tokyo, 2013, xii+229 pages | DOI | MR
[27] Zeta functions of graphs. A stroll through the garden, Cambridge Studies in Advanced Mathematics, 128, Cambridge University Press, Cambridge, 2011, xii+239 pages | MR
[28] SageMath, the Sage Mathematics Software System (Version 8.5) (2018) (https://www.sagemath.org)
[29] On abelian -towers of multigraphs, Ann. Math. Qué., Volume 45 (2021) no. 2, pp. 433-452 | DOI | MR | Zbl
[30] Class numbers and -ranks in -towers, J. Number Theory, Volume 203 (2019), pp. 139-154 | DOI | MR | Zbl
Cité par Sources :





