For a stratified mapping , we consider the condition concerning the kernel of the differential of . We show that the condition is equivalent to the condition which has a more obvious geometric content.
Pour une application stratifiée , on considère la condition concernant le noyau de la différentielle de . On montre que la condition est équivalent à la condition qui a un contenu géométrique plus évident.
@article{AIF_1983__33_1_177_0,
author = {Koike, Satoshi},
title = {On condition $(a_f)$ of a stratified mapping},
journal = {Annales de l'Institut Fourier},
pages = {177--184},
year = {1983},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {33},
number = {1},
doi = {10.5802/aif.908},
mrnumber = {85c:58019},
zbl = {0476.58002},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.908/}
}
TY - JOUR AU - Koike, Satoshi TI - On condition $(a_f)$ of a stratified mapping JO - Annales de l'Institut Fourier PY - 1983 SP - 177 EP - 184 VL - 33 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.908/ DO - 10.5802/aif.908 LA - en ID - AIF_1983__33_1_177_0 ER -
Koike, Satoshi. On condition $(a_f)$ of a stratified mapping. Annales de l'Institut Fourier, Tome 33 (1983) no. 1, pp. 177-184. doi: 10.5802/aif.908
[1] , , , , Topological stability of smooth mappings, Springer Lect. Notes, Berlin Vol. 552 (1976). | Zbl | MR
[2] , Notes on topological stability, mimeographed, Harvard Univ. (1970).
[3] , Geometric versions of Whitney regularity for smooth stratifications, Ann. scient. Ec. Norm. Sup., Vol. 12 (1979), 461-471. | Zbl | MR | Numdam
Cité par Sources :





