The convolution kernels on a homogeneous space , where is a compact sub-group of , that satisfy the complete maximum principle are characterized.
Deny’s result for abelian groups , but with a stronger hypothesis, is a special case.
On caractérise les noyaux de convolution sur un espace homogène où est un sous-groupe compact de , qui satisfont au principe complet du maximum. Comme cas particulier on obtient le résultat de Deny, mais sous une hypothèse plus forte, pour les groupes abéliens.
@article{AIF_1975__25_3-4_519_0,
author = {Taylor, John C.},
title = {On {Deny's} characterization of the potential kernel for a convolution {Feller} semi-group},
journal = {Annales de l'Institut Fourier},
pages = {519--537},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {25},
number = {3-4},
year = {1975},
doi = {10.5802/aif.596},
mrnumber = {53 #5912},
zbl = {0292.43018},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.596/}
}
TY - JOUR AU - Taylor, John C. TI - On Deny's characterization of the potential kernel for a convolution Feller semi-group JO - Annales de l'Institut Fourier PY - 1975 SP - 519 EP - 537 VL - 25 IS - 3-4 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.596/ DO - 10.5802/aif.596 LA - en ID - AIF_1975__25_3-4_519_0 ER -
%0 Journal Article %A Taylor, John C. %T On Deny's characterization of the potential kernel for a convolution Feller semi-group %J Annales de l'Institut Fourier %D 1975 %P 519-537 %V 25 %N 3-4 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.596/ %R 10.5802/aif.596 %G en %F AIF_1975__25_3-4_519_0
Taylor, John C. On Deny's characterization of the potential kernel for a convolution Feller semi-group. Annales de l'Institut Fourier, Volume 25 (1975) no. 3-4, pp. 519-537. doi: 10.5802/aif.596
[1] , Noyaux de Convolution de Hunt et Noyaux Associés à une Famille Fondamentale, Ann. Inst. Fourier, 12 (1962), 643-667. | Zbl | MR | Numdam
[2] , Probability and Potentials, Blaisdell Publishing Company, Waltham, Mass., 1966. | Zbl | MR
[3] , On the existence of sub-Markovian resolvents, Invent. Math., 17 (1972), 85-93. | Zbl | MR
[4] , Ray Processes on Locally Compact Spaces, Math. Annalen. 208 (1974), 233-248. | Zbl | MR
[5] , On the existence of resolvents, Séminaire de probabilité VII, Université de Strasbourg (1971-1972), Springer, Lecture Notes, 321, 291-300, Berlin, 1973. | Zbl | Numdam
Cited by Sources:





