Let be a process with state space satisfying (a somewhat relaxed version of) Meyer’s “hypothèses droites”. Then by introducing a new topology (called the Ray topology) on and a compactification of in the Ray topology one can regard as a Ray process. However, this construction depends on the choice of an arbitrary uniformity on and not just the topology of . We show that the Ray topology is independent of the choice of this uniformity. We then introduce a space (the Ray space) which contains in the Ray topology and which has all of the properties of which are relevant for the study of . Although is not compact it is independent of the choice of the original uniformity on .
Soit un processus de Markov à valeurs dans un espace d’états , satisfaisant à des hypothèses un peu plus faibles que les hypothèses droites de Meyer. Après avoir introduit une topologie nouvelle sur , que l’on appelle topologie de Ray, et un compactifié de pour cette topologie, on peut identifier à un processus de Ray. Cependant, cette construction dépend du choix d’une uniformité sur , et non seulement de la topologie de . Nous montrons que la topologie de Ray ne dépend pas de l’uniformité choisie. On introduit un espace , l’espace de Ray, qui contient dans sa topologie de Ray, et qui possède toutes les propriétés de que l’on veut pour l’étude de . Bien que ne soit pas compact, il est indépendant de l’uniformité.
@article{AIF_1975__25_3-4_207_0,
author = {Getoor, Ronald K. and Sharpe, Michael J.},
title = {The {Ray} space of a right process},
journal = {Annales de l'Institut Fourier},
pages = {207--233},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {25},
number = {3-4},
year = {1975},
doi = {10.5802/aif.580},
mrnumber = {53 #9396},
zbl = {0304.60005},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.580/}
}
TY - JOUR AU - Getoor, Ronald K. AU - Sharpe, Michael J. TI - The Ray space of a right process JO - Annales de l'Institut Fourier PY - 1975 SP - 207 EP - 233 VL - 25 IS - 3-4 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.580/ DO - 10.5802/aif.580 LA - en ID - AIF_1975__25_3-4_207_0 ER -
Getoor, Ronald K.; Sharpe, Michael J. The Ray space of a right process. Annales de l'Institut Fourier, Volume 25 (1975) no. 3-4, pp. 207-233. doi: 10.5802/aif.580
[1] , General Topology, Part 2, Hermann, Paris (1966).
[2] , Capacités et Processus Stochastiques, Springer-Verlag, Heidelberg (1972). | Zbl | MR
[3] , Lectures on Markov Processes : Ray Processes and Right Processes, Preliminary Version Univ. of Calif. San Diego (1974). To appear Springer Lecture Notes in Mathematics.
[4] , Note on regularization of Markov processes, Ill. Journ. Math., 9 (1965), 548-552. | Zbl | MR
[5] , Probability and Potentials, Ginn. Boston (1966). | Zbl | MR
[6] and , Quelques applications des résolvantes de Ray, Invent. Math., 14 (1971), 143-166. | Zbl | MR
[7] , Dirichlet Problem, Extremal Length, and Prime Ends, Van Nostrand Reinhold Math. Studies, 22 (1970). | Zbl
[8] , Probability Measures on Metric Spaces, Academic Press, New York (1967). | Zbl | MR
[9] , Resolvents, transition functions, and strongly Markovian processes, Ann. Math., 70 (1959), 43-72. | Zbl
[10] , On extending potential theory to all strong Markov processes, Ann. Instit. Fourier, 20 (1970), 303-315. | Zbl | MR | Numdam
Cited by Sources:






