This is a continuation of an earlier paper [Inventiones Math., 8 (1969), 175-221]. It is assumed that a space and a sheaf over are given, such that the pair satisfies the Brelot axioms and also satisfies, locally, the additional hypotheses of the theory of adjoint sheaves. The following subjects are considered: 1) Extension of the adjoint-sheaf theory to the case where does not admit a global potential (in particular, the case where is compact). 2) Construction of a new fine resolution of the sheaf , in which is a (complete pre-)sheaf of measures on . 3) Construction of a natural duality between the flux functional corresponds to a distinguished positive element of .
Cet article est la suite d’une publication antérieure [Inventiones Math., 8 (1969), 175-221]. On développe, à partir d’un espace et d’un faisceau défini là-dessus, satisfaisant aux axiomes de Brelot et, localement, aux hypothèses de la théorie des faisceaux adjoints, les sujets suivants : 1) l’extension de la théorie des faisceaux adjoints au cas où n’admet pas de potentiel global (cas particulier : compact). 2) La construction d’une nouvelle résolution fine de , étant un faisceau naturel de mesures sur . 3) La construction d’une dualité naturelle entre et ( supports compacts), faisant correspondre le flux à un élément positif distingué de .
@article{AIF_1969__19_2_371_0,
author = {Walsh, Bertram},
title = {Flux in axiomatic potential theory. {II.} {Duality}},
journal = {Annales de l'Institut Fourier},
pages = {371--417},
year = {1969},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {19},
number = {2},
doi = {10.5802/aif.331},
mrnumber = {42 #2023},
zbl = {0181.11703},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.331/}
}
TY - JOUR AU - Walsh, Bertram TI - Flux in axiomatic potential theory. II. Duality JO - Annales de l'Institut Fourier PY - 1969 SP - 371 EP - 417 VL - 19 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.331/ DO - 10.5802/aif.331 LA - en ID - AIF_1969__19_2_371_0 ER -
Walsh, Bertram. Flux in axiomatic potential theory. II. Duality. Annales de l'Institut Fourier, Tome 19 (1969) no. 2, pp. 371-417. doi: 10.5802/aif.331
[1] , Harmonische Räume und ihre Potentialtheorie, Springer Lecture Notes in Mathematics 22 (1966). | Zbl
[2] , and , Axiomatic theory of harmonic functions : Nonnegative superharmonic functions, Ann. Inst. Fourier (Grenoble) 15 (1965), 283-312. | Zbl | MR | Numdam
[3] , Sheaf Theory, McGraw-Hill, (1967). | Zbl | MR
[4] , Lectures on Potential Theory, Tata Institute, Bombay, 1960. | Zbl | MR
[5] , Lectures on Sheaf Theory, Tata Institute, Bombay, 1957.
[6] and , Linear Operators I, Interscience, New York, 1958. | Zbl | MR
[7] , Lectures on Riemann Surfaces, Princeton Univ. Press, 1966. | Zbl | MR
[8] and , Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, 1965. | Zbl | MR
[9] , Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier (Grenoble) 12 (1962), 415-571. | Zbl | MR | Numdam
[10] , An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier (Grenoble) 16 (1966), 167-208. | Zbl | MR | Numdam
[11] , Axiomatic treatment of full-superharmonic functions, J. Sci. Hiroshima Univ. Ser. A-1 30 (1966), 197-215. | Zbl
[12] , Brelot's axiomatic theory of the Dirichlet problem and Hunt's theory, Ann. Inst. Fourier (Grenoble) 13 (1963), 357-372. | Zbl | MR | Numdam
[13] and , Principal Functions, van Nostrand, Princeton, 1968. | Zbl | MR
[14] , Topological Vector Spaces, Macmillan, New York, 1966. | Zbl | MR
[15] , Invariant ideals of positive operators in C(X), I, Illinois J. Math. 11 (1967), 703-715. | Zbl | MR
[16] and , Nuclearity in axiomatic potential theory, Bull. Amer. Math. Soc. 72 (1966), 685-689. | Zbl | MR
[17] , Intégration, Ch. V : Intégration des Mesures, Hermann et Cie, Paris, 1956.
[18] , Randintegrale und nukleare Funktionenräume, Ann. Inst. Fourier (Grenoble) 17 (1967), 225-271. | Zbl | MR | Numdam
[19] , Approximation et caractère de quasi-analyticité dans la théorie axiomatique des fonctions harmoniques, Ann. Inst. Fourier (Grenoble) 17 (1967), 383-399. | Zbl | MR | Numdam
[20] , Dualität in der Potentialtheorie, Port. Math. 13 (1954), 55-86. | Zbl | MR
[21] , Flux in axiomatic potential theory. I : Cohomology, Inventiones Math. 8 (1969), 175-221. | Zbl | MR
Cité par Sources :





