[Mesures de Jensen et domaines -réguliers non bornés dans ]
Following Sibony, we say that a bounded domain in is -regular if every continuous real valued function on the boundary of can be extended continuously to a plurisubharmonic function on . The aim of this paper is to study an analogue of this concept in the category of unbounded domains in . The use of Jensen measures relative to classes of plurisubharmonic functions plays a key role in our work
En suivant Sibony, nous dirons qu’un domaine borne de est régulier si toute fonction continue à valeurs réelles sur la frontière de peut être prolongée continûment à une fonction plurisousharmonique sur . Le but de ce papier est d’étudier une notion analogue dans la catégorie des domaines non bornés dans . L’usage des mesures de Jensen relatives à des classes de fonctions plurisousharmoniques jouent un rôle clé dans notre travail.
Keywords: Plurisubharmonic function, Dirichlet-Bremermann problem, $B$-regular domain
Mots-clés : fonction plurisousharmonique, Dirichlet-Bremermann problème, domaine $B$-régulier
Nguyen, Quang Dieu 1, 2 ; Hung, Dau Hoang 3
@article{AIF_2008__58_4_1383_0,
author = {Nguyen, Quang Dieu and Hung, Dau Hoang},
title = {Jensen measures and unbounded $B-$regular domains in ${\mathbf{C}}^n$},
journal = {Annales de l'Institut Fourier},
pages = {1383--1406},
year = {2008},
publisher = {Association des Annales de l'Institut Fourier},
volume = {58},
number = {4},
doi = {10.5802/aif.2388},
zbl = {1156.32020},
mrnumber = {2427964},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.2388/}
}
TY - JOUR
AU - Nguyen, Quang Dieu
AU - Hung, Dau Hoang
TI - Jensen measures and unbounded $B-$regular domains in ${\mathbf{C}}^n$
JO - Annales de l'Institut Fourier
PY - 2008
SP - 1383
EP - 1406
VL - 58
IS - 4
PB - Association des Annales de l'Institut Fourier
UR - https://www.numdam.org/articles/10.5802/aif.2388/
DO - 10.5802/aif.2388
LA - en
ID - AIF_2008__58_4_1383_0
ER -
%0 Journal Article
%A Nguyen, Quang Dieu
%A Hung, Dau Hoang
%T Jensen measures and unbounded $B-$regular domains in ${\mathbf{C}}^n$
%J Annales de l'Institut Fourier
%D 2008
%P 1383-1406
%V 58
%N 4
%I Association des Annales de l'Institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2388/
%R 10.5802/aif.2388
%G en
%F AIF_2008__58_4_1383_0
Nguyen, Quang Dieu; Hung, Dau Hoang. Jensen measures and unbounded $B-$regular domains in ${\mathbf{C}}^n$. Annales de l'Institut Fourier, Tome 58 (2008) no. 4, pp. 1383-1406. doi: 10.5802/aif.2388
[1] A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40 | DOI | Zbl | MR
[2] The complex Monge-Ampère operator in hyperconvex domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 23 (1996), pp. 721-747 | Zbl | MR | Numdam
[3] On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of Silov boundaries, Trans. Amer. Math. Soc., Volume 91 (1959), pp. 246-276 | Zbl | MR
[4] An Introduction to Analysis, Graduate Texts in Mathematics, 154, Springer-Verlag, 1995 | Zbl | MR
[5] Choquet boundary theory for certain spaces of lower semicontinuous functions, Function algebras, Chicago, Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965 (1966), pp. 300-309 | Zbl | MR
[6] Approximation of plurisubharmonic functions, Ark. Mat., Volume 27 (1989), pp. 257-272 | DOI | Zbl | MR
[7] Subharmonic function, London Mathematical Society Monographs, I, Academic Press, Harcourt Brace Jovanovich, London-New York, 1976 no. 9, pp. xvii+284 | Zbl
[8] Pluripotential theory, London Mathematical Society Monographs. New Series, 6, The Clarendon Press Oxford University Press, New York, 1991 (Oxford Science Publications) | Zbl | MR
[9] Approximation of plurisubharmonic functions on bounded domains in , Michigan Math. J., Volume 54 (2006) no. 3, pp. 697-711 | DOI | Zbl | MR
[10] regularity of certain domains in ,, Annales Polon. Math., Volume 86 (2005) no. 2, pp. 137-152 | DOI | Zbl | MR
[11] Jensen measures and approximation of plurisubharmonic functions, Michigan Math. J., Volume 53 (2005), pp. 529-544 | DOI | Zbl | MR
[12] Real and Complex Analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966 | Zbl | MR
[13] The Dirichlet problem for Levi-flat graphs over unbounded domains, Internat. Math. Res. Notices, Volume 3 (1999), pp. 111-151 | DOI | Zbl | MR
[14] Une classe des domaines pseudoconvex, Duke Math. J., Volume 55 (1987), pp. 299-319 | DOI | Zbl | MR
[15] The Bremermann-Dirichlet problem for unbounded domains in (http://it.arxiv.org/math/pdf/0702/0702179v1.pdf, preprint, 2007, to be published in Manuscripta Mat)
[16] Continuity of envelopes of plurisubharmonic functions, J. Math. Mech., Volume 18 (1968/1969), pp. 143-148 | Zbl | MR
[17] Jensen measures and boundary values of plurisubharmonic functions, Ark. Mat., Volume 39 (2001), pp. 181-200 | DOI | Zbl | MR
Cité par Sources :





