We prove a vanishing theorem for the cohomology of the complement of a complex hyperplane arrangement with coefficients in a complex local system. This result is compared with other vanishing theorems, and used to study Milnor fibers of line arrangements, and hypersurface arrangements.
Nous démontrons un théorème d'annulation pour la cohomologie du complémentaire d'un arrangement d'hyperplans complexes à coefficients dans un système local. Ce résultat est comparé à d'autres théorèmes d'annulation et il est utilisé pour étudier les fibres de Milnor associées à des arrangements de droites et d'hypersurfaces.
Keywords: hyperplane arrangement, local system, Milnor fiber
Mot clés : arrangement d'hyperplans, système local, fibre de Milnor
@article{AIF_2003__53_6_1883_0, author = {Cohen, Daniel C. and Dimca, Alexandru and Orlik, Peter}, title = {Nonresonance conditions for arrangements}, journal = {Annales de l'Institut Fourier}, pages = {1883--1896}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {6}, year = {2003}, doi = {10.5802/aif.1994}, mrnumber = {2038782}, zbl = {1054.32016}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1994/} }
TY - JOUR AU - Cohen, Daniel C. AU - Dimca, Alexandru AU - Orlik, Peter TI - Nonresonance conditions for arrangements JO - Annales de l'Institut Fourier PY - 2003 SP - 1883 EP - 1896 VL - 53 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1994/ DO - 10.5802/aif.1994 LA - en ID - AIF_2003__53_6_1883_0 ER -
%0 Journal Article %A Cohen, Daniel C. %A Dimca, Alexandru %A Orlik, Peter %T Nonresonance conditions for arrangements %J Annales de l'Institut Fourier %D 2003 %P 1883-1896 %V 53 %N 6 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1994/ %R 10.5802/aif.1994 %G en %F AIF_2003__53_6_1883_0
Cohen, Daniel C.; Dimca, Alexandru; Orlik, Peter. Nonresonance conditions for arrangements. Annales de l'Institut Fourier, Volume 53 (2003) no. 6, pp. 1883-1896. doi : 10.5802/aif.1994. https://www.numdam.org/articles/10.5802/aif.1994/
[1] Hypergeometric Functions, (in Japanese), Springer-Verlag, Tokyo, 1994
[2] Monodromie des systèmes différentiels linéaires à pôles simples sur la sphère de Riemann (d'après A. Bolibruch), Séminaire Bourbaki, Vol. 1992/93 (Astérisque), Volume 216, Exp. No. 765, 4 (1993), pp. 103-119 | EuDML | Numdam | Zbl
[3] Faisceaux Pervers, Analysis and topology on singular spaces, I (Luminy, 1981) (Astérisque), Volume 100 (1982), pp. 5-171 | MR | Zbl
[4] The Riemann-Hilbert problem, Russian Math. Surveys, Volume 45 (1990), pp. 1-58 | DOI | MR | Zbl
[5] On Milnor fibrations of arrangements, J. London Math. Soc., Volume 51 (1995), pp. 105-119 | MR | Zbl
[6] On the number of bounding cycles for nonlinear arrangements, Arrangements--Tokyo 1998 (Adv. Stud. Pure Math), Volume 27 (2000), pp. 51-72 | Zbl
[7] Équations Différentielles à Points Singuliers Réguliers, Lect. Notes in Math., 163, Springer-Verlag, Berlin-New York, 1970 | MR | Zbl
[8] Singularities and Topology of Hypersurfaces, Universitext, Springer-Verlag, New York | MR | Zbl
[9] Sheaves in Topology (Universitext, Springer-Verlag, New York, to appear) | MR | Zbl
[10] Hyperplane arrangements, -tame polynomials and twisted cohomology, Commutative Algebra, Singularities and Computer Algebra (NATO Science Series), Volume Vol. 115 (2003), pp. 113-126 | Zbl
[11] Hypersurface complements, Alexander modules and monodromy (2002) Proceedings of the 7th Workshop on Real and Complex Singularities (Sao Carlos, 2002), to appear, preprint, math.AG/0201291 | MR | Zbl
[12] Equivariant chain complexes, twisted homology and relative minimality of arrangements (2003) (e-print, math.AG/0305266) | Numdam | MR
[13] Cohomology of local systems on the complement of hyperplanes, Invent. Math., Volume 109 (1992), pp. 557-561 | DOI | MR | Zbl
[13] Erratum: "Cohomology of local systems on the complement of hyperplanes", Invent. Math, Volume 112 (1993) no. 2, pp. 447 | MR | Zbl
[14] Logarithmic de Rham complexes and vanishing theorems, Invent. Math., Volume 86 (1986), pp. 161-194 | DOI | MR | Zbl
[15] General theory of hypergeometric functions, Soviet Math. Dokl., Volume 33 (1986) | MR | Zbl
[16] Sheaves on Manifolds, Grundlehren Math. Wiss., 292, Springer-Verlag, Berlin, 1994 | MR | Zbl
[17] Homology of a local system on the complement of hyperplanes, Proc. Japan Acad., Ser. A, Volume 62 (1986), pp. 144-147 | DOI | MR | Zbl
[18] Regular linear systems on and their monodromy groups, Complex analytic methods in dynamical systems (Rio de Janeiro, 1992) (Astérisque), Volume No 222 (1994), pp. 259-283 | Zbl
[19] The topology of complements to hypersurfaces and nonvanishing of a twisted de Rham cohomology, Singularities and complex geometry (Beijing, 1994) (AMS/IP Stud. Adv. Math.), Volume 5 (1997), pp. 116-130 | Zbl
[20] Eigenvalues for the monodromy of the Milnor fibers of arrangements, Trends in Singularities (Trends Math.) (2002), pp. 141-150 | Zbl
[21] Perversity, duality and arrangements in , Topology Appl., Volume 73 (1996), pp. 169-179 | DOI | MR | Zbl
[22] Arrangements of Hyperplanes, Grundlehren Math. Wiss., vol. 300, Springer-Verlag, Berlin | MR | Zbl
[23] Arrangements and Hypergeometric Integrals, MSJ Mem., 9, Math. Soc. Japan, Tokyo, 2001 | MR | Zbl
[24] Local systems over complements of hyperplanes and the Kac-Kazhdan condition for singular vectors, J. Pure Appl. Algebra, Volume 100 (1995), pp. 93-102 | DOI | MR | Zbl
[25] Multidimensional Hypergeometric Functions and Representation Theory of Lie Algebras and Quantum Groups, Adv. Ser. Math. Phys., 21, World Scientific, River Edge, 1995 | MR | Zbl
[26] Cohomology of the Brieskorn-Orlik-Solomon algebras, Comm. Algebra, Volume 23 (1995), pp. 5339-5354 | DOI | MR | Zbl
Cited by Sources: