Nous déterminons tous les corps diédraux à multiplication complexe de nombres de classes relatif un, puis ceux de nombre de classes un : il y a 32 tels corps non-abéliens principaux. C’est le premier exemple, dans ce cadre assez général, de résolution du problème de nombre de classes un pour les corps galoisiens à multiplication complexe avec un type de groupe de Galois non-abélien fixé.
We determine all the dihedral CM fields with relative class number one, then all of them with class number one: there are 32 such non-abelian fields with class number one. This is the first example of resolution of the class number one problem for non-abelian normal CM-fields of a given Galois group.
@article{AIF_2000__50_1_67_0,
author = {Lefeuvre, Yann},
title = {Corps di\'edraux \`a multiplication complexe principaux},
journal = {Annales de l'Institut Fourier},
pages = {67--103},
year = {2000},
publisher = {Association des Annales de l'Institut Fourier},
volume = {50},
number = {1},
doi = {10.5802/aif.1747},
mrnumber = {2001g:11166},
zbl = {0952.11024},
language = {fr},
url = {https://www.numdam.org/articles/10.5802/aif.1747/}
}
TY - JOUR AU - Lefeuvre, Yann TI - Corps diédraux à multiplication complexe principaux JO - Annales de l'Institut Fourier PY - 2000 SP - 67 EP - 103 VL - 50 IS - 1 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1747/ DO - 10.5802/aif.1747 LA - fr ID - AIF_2000__50_1_67_0 ER -
%0 Journal Article %A Lefeuvre, Yann %T Corps diédraux à multiplication complexe principaux %J Annales de l'Institut Fourier %D 2000 %P 67-103 %V 50 %N 1 %I Association des Annales de l'Institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1747/ %R 10.5802/aif.1747 %G fr %F AIF_2000__50_1_67_0
Lefeuvre, Yann. Corps diédraux à multiplication complexe principaux. Annales de l'Institut Fourier, Tome 50 (2000) no. 1, pp. 67-103. doi: 10.5802/aif.1747
[1] , , , Computing ray class groups, conductors and discriminants, Actes du Colloque ANTS II, Talence, 1996. | Zbl
[2] , Note on Dirichlet's L-functions, Acta Arith., 1 (1936), 113-114. | Zbl | JFM
[3] , , , On a hypothesis implying the non-vanishing of Dirichlet's L-series L(s,χ) for s > 0, J. reine angew. Math., 262/263 (1973), 415-419. | Zbl | MR
[4] , , On the functional equation of the Artin L-function for characters of real representations, Invent. Math., 20 (1973), 125-138. | Zbl | MR
[5] , Elementary theory of L-functions and Eisenstein series, London Math. Soc., Student Texts, Cambridge University Press, 26 (1993). | Zbl | MR
[6] , Some analytic bounds for zeta functions and class numbers, Invent. Math., 55 (1979), 37-47. | Zbl | MR
[7] , Corps à multiplication complexe diédraux principaux, Thèse, Univ. Caen, soutenue le 28 juin 1999.
[8] , , The class number one problem for the dihedral CM-fields, to appear in the Proceedings of Conference on Algebraic Number Theory and Diophantine Analysis, Gras, 1998. | Zbl
[9] , Lower bounds for relative class numbers of CM-fields, Proc. Amer. Math. Soc., 120 (1994), 425-434. | Zbl | MR
[10] , Corps quadratiques principaux à corps de classes de Hilbert principaux et à multiplication complexe, Acta Arith., 74 (1996), 121-140. | Zbl | MR
[11] , Majorations explicites du résidu au point 1 des fonctions zêta de certains corps de nombres, J. Math. Soc. Japan, 50 (1998), 57-69. | Zbl | MR
[12] , Upper bounds on |L(1,χ)| and applications, Canad. J. Math., 50 (1998), 795-815. | Zbl
[13] , Computation of relative class numbers of CM-fields by using Hecke L-functions, Math. Comp., 69 (1999), 371-393. | Zbl | MR
[14] , Computation of L(0,χ) and of relative class numbers of CM-fields, Preprint Univ. Caen, 1998. | Zbl
[15] , , Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith., 67 (1994), 47-62. | Zbl | MR
[16] , , The class number one problem for some non-abelian normal CM-fields of 2-power degrees, Proc. London Math. Soc., 76 (3) (1998), 523-548. | Zbl | MR
[17] , , , The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc., 349 (1997), 3657-3678. | Zbl | MR
[18] , , , Construction of the real dihedral number fields of degree 2p. Applications, Acta Arith., 89 (1999), 201-215. | Zbl | MR
[19] , Sur l'arithmétique des extensions galoisiennes à groupe de Galois diédral d'ordre 2p, Ann. Inst. Fourier Grenoble, 19, 1 (1969), 1-80. | Zbl | MR | Numdam
[20] , Some analytic estimates of class numbers and discriminants, Invent. Math., 29 (1975), 279-286. | Zbl | MR
[21] , On conductors and discriminants, Algebraic number fields, Durham Symposium, 1975, A. Fröhlich, éd., Academic Press (1977), 377-407. | Zbl | MR
[22] , Algorithmes de factorisation dans les extensions relatives et applications de la conjecture de Stark à la construction des corps de classes de rayon, Thèse, Univ. Bordeaux, 1997.
[23] , Introduction to cyclotomic fields, Springer-Verlag, Graduate Texts in Mathematics 83, second edition, 1997. | Zbl | MR
[24] , The determination of the imaginary abelian number fields with class number one, Math. Comp., 62 (1994), 899-921. | Zbl | MR
Cité par Sources :





