We consider the Schrödinger operators in where the nonnegative potential belongs to the reverse Hölder class for some . We obtain the optimal estimates for the operators and where . In particular we show that is a Calderón-Zygmund operator if and are Calderón-Zygmund operators if .
Nous considérons des opérateurs de Schrödinger dans où le facteur non négatif appartient à la classe de Hölder inversée pour tout . Nous obtenons les estimations optimales pour les opérateurs et où . En particulier nous montrons que est un opérateur de Calderón-Zygmund si and sont des opérateurs de Calderón-Zygmund si .
@article{AIF_1995__45_2_513_0,
author = {Shen, Zhongwei},
title = {$L^p$ estimates for {Schr\"odinger} operators with certain potentials},
journal = {Annales de l'Institut Fourier},
pages = {513--546},
year = {1995},
publisher = {Association des Annales de l'Institut Fourier},
volume = {45},
number = {2},
doi = {10.5802/aif.1463},
mrnumber = {96h:35037},
zbl = {0818.35021},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1463/}
}
TY - JOUR AU - Shen, Zhongwei TI - $L^p$ estimates for Schrödinger operators with certain potentials JO - Annales de l'Institut Fourier PY - 1995 SP - 513 EP - 546 VL - 45 IS - 2 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1463/ DO - 10.5802/aif.1463 LA - en ID - AIF_1995__45_2_513_0 ER -
%0 Journal Article %A Shen, Zhongwei %T $L^p$ estimates for Schrödinger operators with certain potentials %J Annales de l'Institut Fourier %D 1995 %P 513-546 %V 45 %N 2 %I Association des Annales de l'Institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1463/ %R 10.5802/aif.1463 %G en %F AIF_1995__45_2_513_0
Shen, Zhongwei. $L^p$ estimates for Schrödinger operators with certain potentials. Annales de l'Institut Fourier, Tome 45 (1995) no. 2, pp. 513-546. doi: 10.5802/aif.1463
[CM] and , Au-delà des opérateurs pseudo-différentiels, Astérisque, 57 (1978). | Zbl | MR | Numdam
[D] , H∞ Functional Calculus of Elliptic Partial Differential Operators in Lp Spaces, Ph.D. Thesis, Macquarie University, 1990.
[F] , The Uncertainty Principle, Bull. Amer. Math. Soc., 9 (1983), 129-206. | Zbl | MR
[G] , The Lp-integrability of the Partial Derivatives of a Quasi-conformal Mapping, Acta Math., 130 (1973), 265-277. | Zbl | MR
[GT] and , Elliptic Partial Differential Equations of Second Order, Second Ed., Springer Verlag, 1983. | Zbl
[H] , A Multiplier Theorem for Schrödinger operators, Colloquium Math., LX/LXI (1990), 659-664. | Zbl
[HN] and , Une Ingégalité L2, preprint.
[M] , Weighted Norm Inequality for the Hardy Maximal Function, Trans. Amer. Math. Soc., 165 (1972), 207-226. | Zbl | MR
[RS] and , Hypoelliptic Differential Operators and Nilpotent Groups, Acta Math., 137 (1977), 247-320. | Zbl | MR
[Sh] , On the Neumann Problem for Schrödinger Operators in Lipschitz Domains, Indiana Univ. Math. J., 43(1) (1994), 143-176. | Zbl | MR
[Sm] , Parametrix Construction for a Class of Subelliptic Differential Operators, Duke Math. J., (2)63 (1991), 343-354. | Zbl | MR
[St1] , Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. | Zbl | MR
[St2] , Harmonic Analysis: Real-Variable Method, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. | Zbl
[T] , Riesz Transforms and the Wave Equation for the Hermite Operators, Comm. in P.D.E., (8)15 (1990), 1199-1215. | Zbl | MR
[Z] , Harmonic Analysis for Some Schrödinger Type Operators, Ph.D. Thesis, Princeton University, 1993.
Cité par Sources :






